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Improve short-term

Situations of large forecast uncertainty Hedging against uncertainty

forecasts
8 Novel techniques to understand and derive How can short-term forecasts be improved? How can renewable energy systems adapt to uncertainty?
‘g insights from the study of meteorological
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Weather regimes Bias correction of temperature End-to-end PV learning model
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Weather regimes can explain systematic errrors of renewable
energy forecasts for wind, irradiance and temperature

Development of novel
method to use weather
patterns based on Lasso
Regression with EOFs
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Spatio-temporal relationship of InterpNet- Temporal interpolation of Data-driven mean-variability optimization of PV
renewable forecast errors solar irradiance ensemble forecasts portfolios with automatic differentiation

NWP models are computationally costly whereas
applications require detailed spatio-temporal information
Interpolation error = Changes in atmosphere + Diurnal cycle
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Research guestion: Can smart PV portfolios help to hedge against
renewable energy uncertainty?

same day

Formulate as biobjective optimization problem (mean-variaibility
optimization) optimizing 0, ¢ to optimize based on capacity factor ¢; ¢
Solve in a data-driven fashion based on automatic differentiation
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