Deutsche Bundesstiftung Umwelt

Abschlussbericht

Optimierung der In-situ-Reaktortecnoologie zur dezentralen Trinkwassergewinnung und Grundwasseraufbereitung durch modellhafte Untersuchungen beteiligter Biofilme

AZ 18193
Projeklaufzeit 06/2001 bis 12/2003
(Verlängerung bis 05/2004)

Universität GH Duisburg
Prof. Dr.-Ing. H.-C. Flemming, Dr. H. Steele

Winkelnkemper GmbH
H. Winkelnkemper

Universität Stuttgart
Prof. Dr.-Ing. U. Rott, Dipl.-Ing. C. Meyer

Institut für Siedlungswasserbau, Wassergüte- u. Abfallwirtschaft der Universität Stuttgart

Im Juli 2004
Inhalt

1 Projektkennblatt der DBU ...9
2 Anlass und Zielsetzung des Vorhabens ..11
3 Zusammenfassung ...13
4 Arbeitsschritte und Methoden ..14
 4.1 Arbeitsschritte und Methoden bei der Durchführung der In-situ-Aufbereitungsversuche14
 4.2 Mikrobiologische Arbeitsschritte und Untersuchungsmethoden14
5 Beschreibung des Verfahrens der unterirdischen Enteisenung und Entmanganung (UEE) - Stand des Wissens ...17
 5.1 Technische Verfahrensbeschreibung ..17
 5.2 Chemisch-physikalische Prozesse ...19
 5.3 Biologische Prozesse ...23
 5.4 Vor- und Nachteile des Verfahrens ...27
6 Versuchsstandorte und Versuchsbetrieb29
 6.1 Anlagenbeschreibung ...29
 6.2 Rohwasserbeschaffenheit ..39
 6.3 Betriebsprogramme ...42
 6.4 Beschaffenheit des Untergrunds ...45
 6.5 Reaktionszone ...50
 6.6 Entnahme von Bodenproben ..54
 6.7 Entnahme von Sedimentproben aus dem Belüftungsbehälter von Standort 3-a58
7 Ergebnisse der Aufbereitungsversuche ...60
 7.1 Aufbereitungsziel ..60
 7.2 Enteisenung und Entmanganung ...61
8 Mikrobiologische Untersuchungsmethoden zur Lokalisierung, Identifizierung und Charakterisierung von Eisen- und Mangan-oxidierenden Mikroorganismen86
 8.1 Prinzipien der analytischen Methoden – molekularbiologische Methoden und Kultivierungsmethoden ...86
 8.1.1 Mikroskopie der Probe ..86
 8.1.2 Kultivierung von Eisen- und Mangan-Oxidierern87
 8.1.3 Molekularbiologische Techniken ...88
9 Diskussion der mikrobiologischen Untersuchungsergebnisse93
 9.1 Eisen- und Mangan-oxidierende Mikroorganismen aus der Reaktionszone der In-situ-Reaktoren ...93
 9.1.1 Analyse der mikrobiellen Gemeinschaft mittels Mikroskopieren von Eisen- und Mangan-Oxidierern ...93
<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab. 1</td>
<td>Verfahrensschema der unterirdischen Wasseraufbereitung</td>
<td>17</td>
</tr>
<tr>
<td>Ab. 2</td>
<td>Reaktionszone</td>
<td>19</td>
</tr>
<tr>
<td>Ab. 3</td>
<td>Adsorptions-Oxidations-Modell</td>
<td>20</td>
</tr>
<tr>
<td>Ab. 4</td>
<td>Stabilitätsfelder von Eisen und Mangan bei Ionenaktivität von 10^{-5} mol/L, Druck von 1013,24 hPa und Temperatur von 25 °C; bei dem Stabilitätsfeld von MnCO$_3$ gilt zusätzlich ein CO$_2$-Gehalt von (nach Scheffer & Schachtschabel, 2002, Stumm, 1970 und Brookins, 1988, modifiziert)</td>
<td>22</td>
</tr>
<tr>
<td>Ab. 5</td>
<td>vereinfachtes Stabilitätsdiagramm mehrer Reaktionssysteme</td>
<td>23</td>
</tr>
<tr>
<td>Ab. 6</td>
<td>FERMANOX®- Wasseraufbereitungsanlage zur Eisen- und Manganentfernung „Zwei-Brunnen-Anlage“</td>
<td>29</td>
</tr>
<tr>
<td>Ab. 7</td>
<td>In-situ-Anlage Standort 1 (Pumpe, Belüftungsbehälter und Druckbehälter)</td>
<td>30</td>
</tr>
<tr>
<td>Ab. 8</td>
<td>FERMANOX®- Wasseraufbereitungsanlage zur Eisen- und Manganentfernung „Ein-Brunnen-Anlage“</td>
<td>31</td>
</tr>
<tr>
<td>Ab. 9</td>
<td>In-situ-Anlage Standort 2 (Pumpe, verbrauchsabhängige Regelung und Belüftungsbehälter)</td>
<td>32</td>
</tr>
<tr>
<td>Ab. 10</td>
<td>Lageplan der Brunnen der Anlagen an Standort 3</td>
<td>33</td>
</tr>
<tr>
<td>Ab. 11</td>
<td>In-situ-Anlage Standort 4 (verbrauchsabhängige Regelung und Belüftungsbehälter)</td>
<td>34</td>
</tr>
<tr>
<td>Ab. 12</td>
<td>Rückstände auf Boden und Geländer durch die Beregnung der Rasenflächen mit eisenhaltigem Wasser</td>
<td>35</td>
</tr>
<tr>
<td>Ab. 13</td>
<td>Brunennausbau und Bohrprofil Brunnen 1, Standort 4</td>
<td>37</td>
</tr>
<tr>
<td>Ab. 14</td>
<td>Brunennausbau und Bohrprofil Brunnen 2, Standort 4</td>
<td>38</td>
</tr>
<tr>
<td>Ab. 15</td>
<td>Bodenansprache Versuchsstandort 1</td>
<td>46</td>
</tr>
<tr>
<td>Ab. 16</td>
<td>Bodenansprache Versuchsstandort 2</td>
<td>47</td>
</tr>
<tr>
<td>Ab. 17</td>
<td>Bodenansprache Versuchsstandort 3-b</td>
<td>48</td>
</tr>
<tr>
<td>Ab. 18</td>
<td>Bodenansprache Versuchsstandort 4, (A) Bereich Brunnen 1, (B) Bereich Brunnen 2</td>
<td>49</td>
</tr>
<tr>
<td>Ab. 19</td>
<td>Rammmkernsondierungen Standort 1, Brunnen 2, unaufmaßstäblich</td>
<td>55</td>
</tr>
<tr>
<td>Ab. 20</td>
<td>Rammmkernsondierungen Standort 2, unaufmaßstäblich</td>
<td>56</td>
</tr>
<tr>
<td>Ab. 21</td>
<td>Schlauchkernbohrung am Standort 3-c, unaufmaßstäblich</td>
<td>58</td>
</tr>
<tr>
<td>Ab. 22</td>
<td>Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 1 in Abhängigkeit der Aufbereitungszyklen</td>
<td>62</td>
</tr>
<tr>
<td>Ab. 23</td>
<td>Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 1 in Abhängigkeit der Betriebstage</td>
<td>63</td>
</tr>
<tr>
<td>Ab. 24</td>
<td>Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 1 in Abhängigkeit der Aufbereitungszyklen</td>
<td>63</td>
</tr>
<tr>
<td>Ab. 25</td>
<td>Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 1 in Abhängigkeit der Aufbereitungszyklen</td>
<td>64</td>
</tr>
<tr>
<td>Ab. 26</td>
<td>Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 1 in Abhängigkeit der Betriebstage</td>
<td>65</td>
</tr>
<tr>
<td>Ab. 27</td>
<td>Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 1 in Abhängigkeit der Aufbereitungszyklen</td>
<td>65</td>
</tr>
</tbody>
</table>
Abbildung 28: Eisen-Konzentrationen und pH-Wert (Einfahrphase) im Förderwasser des Brunnens an Standort 2 in Abhängigkeit der Aufbereitungszyklen ..67
Abbildung 29: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 2 in Abhängigkeit der Betriebstage ..68
Abbildung 30: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 2 in Abhängigkeit der Aufbereitungszyklen ..68
Abbildung 31: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-a in Abhängigkeit der Aufbereitungszyklen ..70
Abbildung 32: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-a in Abhängigkeit der Aufbereitungszyklen ..71
Abbildung 33: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-b in Abhängigkeit der Aufbereitungszyklen ..72
Abbildung 34: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-b in Abhängigkeit der Aufbereitungszyklen ..72
Abbildung 35: Eisen- und Mangan-Konzentrationen (Dauerbelastung) im Förderwasser des Brunnens an Standort 3-b in Abhängigkeit des Fördervolumens ..73
Abbildung 36: Eisen- und Mangan-Konzentrationen (Dauerbelastung) im Förderwasser des Brunnens an Standort 3-b in Abhängigkeit des Ergiebigkeitskoeffizienten ..74
Abbildung 37: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-c in Abhängigkeit der Aufbereitungszyklen ..75
Abbildung 38: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-c in Abhängigkeit der Aufbereitungszyklen ..75
Abbildung 39: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit der Betriebstage ...78
Abbildung 40: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit der Betriebstage ...79
Abbildung 41: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen ..79
Abbildung 42: Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen ..80
Abbildung 43: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit der Betriebstage ...80
Abbildung 44: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit der Betriebstage ...81
Abbildung 45: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen ..81
Abbildung 46: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen ..81
Abbildung 47: Sulfat-Konzentrationen und pH(Vorversuch) im Förderwasser von Brunnen an Standort 5 in Abhängigkeit des Fördervolumens ...83
Abbildung 48: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 5 in Abhängigkeit der Aufbereitungszyklen ...85
Abbildung 49: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 5 in Abhängigkeit der Aufbereitungszyklen ...85
Abbildung 50: Zusammenfassung der Schritte, die zur Isolierung, Amplifizierung und Organisation der 16S-Gene aus Umweltproben notwendig sind ...89
Abbildung 51: Erstellung einer Klone library aus der Mischung an 16S-Sequenzen ...90
Abbildung 52: Denaturing Gradient Gel Electrophoresis von 16S rDNS Genen ...92
Abbildung 53: Vergleich des Bodenmaterials in (A) und außerhalb (B) der Reaktionszone.

Abbildung 54: Eisen-oxidierende Bakterien

Abbildung 55: Gramfärbung Eisen-oxidierende Bakterien

Abbildung 56: Phasenkontrastmikroskopisches Bild: stäbchenförmige Zellen

Abbildung 57: rostfarbene mikrobielle Kultur aus der Reaktionszone, die auf das Wachstum von Eisen-oxidierenden Bakterien auf PYFe-Medium hinweist

Abbildung 58: (A): Kolonien des Isolates M9 bei Wachstum auf PYMn-Medium und auf PY-Medium; (B): Kolonien des Isolates M10 auf PYMn-Medium und PY-Kontrollmedium; braune Kolonien auf PYMn-Medium deuten auf Mangan-Oxidation hin

Abbildung 59: UPGMA Cluster-Analyse von Klonen aus der Reaktionszone; 16S rDNS wurde restringiert mit Cfo I, Dde I, Msp I und Sau3A I

Abbildung 60: Vergleich der Restriktionsfragmente der Klone RB1 und RB5; fettgedruckte Pfeile: Ort der Schlüssel-Restriktionsfragmente aus Tabelle 26

Abbildung 61: (A) Bau des Versuchsbrunnens, der mit biologisch aktivem Material inokuliert wurde; (B) Bau des nicht-inokulierten Versuchsbrunnens, der als Kontrolle diente

Abbildung 62: (A) Verlauf der Mangankonzentrationen im direkt angeimpften Brunnen (Standort 3-a) und (B) im Kontrollbrunnen (Standort 3-b)

Abbildung 63: Blick in den Belüftungstank; eine dünne Sedimentschicht ist klar erkennbar; sie stammt aus dem Aquifer

Abbildung 64: (A) Verlauf der Mangankonzentrationen im indirekt angeimpften Brunnen (Standort 3-c) und (B) im Kontrollbrunnen (Standort 3-b)

Abbildung 66: DGGE-Vergleich zwischen der Belüftungstank- und der Reaktionszonen-Population; die Spuren 1-4 sind analog zu denen im obigen Bild; die Spuren 5-12 stammen aus einer nested-PCR (16S-PCR gefolgt von DGGE-PCR)
Tabellenverzeichnis

Tabelle 1: Literatur-Übersicht von Mangan-oxidierenden Bakterien ...26
Tabelle 2: Literatur-Übersicht von Eisen-oxidierenden Bakterien ...27
Tabelle 3: Vor- und Nachteile der unterirdischen Enteisenung und Entmanganung28
Tabelle 4: Rohwasseranalyse Standort 1 ..39
Tabelle 5: Rohwasseranalyse Standort 2 ..40
Tabelle 6: Rohwasseranalyse Standort 3-a, 3-b und 3-c ..41
Tabelle 7: Rohwasseranalyse Standort 4 ..41
Tabelle 8: Rohwasseranalyse Standort 5 ..42
Tabelle 9: Betriebsprogramme der In-situ-Anlage an Standort 1 (Brunnen 1 und 2)43
Tabelle 10: Betriebsprogramme der In-situ-Anlage an Standort 2 ..43
Tabelle 11: Betriebsprogramme der In-situ-Anlage an Standort 3-a ...44
Tabelle 12: Betriebsprogramme der In-situ-Anlage an Standort 3-b ...44
Tabelle 13: Betriebsprogramme der In-situ-Anlage an Standort 3-c ...44
Tabelle 14: Betriebsprogramme der In-situ-Anlage an Standort 4, Brunnen 144
Tabelle 15: Betriebsprogramm der In-situ-Anlage an Standort 4, Brunnen 244
Tabelle 16: Betriebsprogramme der In-situ-Anlage an Standort 5 ..45
Tabelle 17: Betriebsparameter, Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten der Brunnen 1 und 2 (gleicher Ausbau) an Standort 1 in Abhängigkeit der Betriebsprogramme ...51
Tabelle 18: Betriebsparameter und Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten des Brunnen an Standort 2 in Abhängigkeit der Betriebsprogramme ...51
Tabelle 19: Betriebsparameter und Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten der Brunnen an Standort 3-a, 3-b und 3-c ..52
Tabelle 20: Betriebsparameter und Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten der Brunnen 1 und 2 an Standort 4 ..53
Tabelle 21: Betriebsparameter und Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten des Brunnen an Standort 5 in Abh. der BP53
Tabelle 22: Grenzwerte für Eisen und Mangan nach TrinkwV ..60
Tabelle 23: Sequenz und Position der universellen Primer, die für die Amplifikation der 16S Gene eingesetzt werden ...90
Tabelle 24: Sequenz und Position der universelle Primer, die für die Amplifikation der 16S Gene eingesetzt werden ...92
Tabelle 25: Sequenzvergleich der 16S rDNS von Mangan-Oxidierern und Reaktionszonen-Cluster II mit der ncbi-Datenbank ...98
Tabelle 26: Schlüssel-Restriktionsfragmentgrößen aus der Modell-Restriktion der Acidovorax-Typ Stämme Leptothrix discophora, Sphaerotilus natans und aus der experimentellen Restriktions-Analyse der Klone RB1 und RB5 ...99
Tabelle 27: Sequenzvergleich der 16S rDNS von Mangan-Oxidierern und Reaktionszonen-Cluster III mit der ncbi-Datenbank ...100
Tabelle 28: Sequenzvergleich der 16S rDNS von Mangan-Oxidierern und Klonen aus der Reaktionszone von Cluster IV mit der ncbi Datenbank ...101
Verzeichnis der Abkürzungen und Begriffe

DN Nenndurchmesser
f Länge der Brunnenfilterstrecke
Fe Eisen
K_E Ergiebigkeitskoeffizient
Mn Mangan
n_f durchflusswirksames Porenvolumen des Aquifers
TB1 Tiefbrunnen der Tiefbrunnenanlage 1
TB2 Tiefbrunnen 2
TrinkwV Trinkwasserverordnung
UEE unterirdische Enteisenung und Entmanganung
V_{FOE} Fördermenge
V_{INF} Infiltrationsmenge
V_R Volumen der Reaktionszone/des Reaktionsraums
Zykl. Aufbereitungszyklus

Aufbereitungszyklus Förderphase und Infiltrationsphase des Brunnens einschließlich der jeweils dazugehörigen Ruhephasen.

BAM Biologisch aktives Material

Förderphase Phase des Aufbereitungszyklus, in der Wasser aus einem Brunnen gefördert wird, um es als aufbereitetes Wasser zu nutzen, oder, um es nach Sauerstoffanreicherung in einen weiteren Brunnen einzuleiten.

In-situ-Reaktor Synonyme: In-situ-Anlage, In-situ-Aufbereitungsanlage, In-situ-Grundwasseraufbereitungsanlage

Infiltrationsphase Phase des Aufbereitungszyklus, in der mit Sauerstoff angereichertes Wasser in einen Brunnen eingeleitet und über dessen Filterstrecke in den Grundwasserleiter infiltriert wird.

Reaktionszone Der den Brunnen umgebende Teil des Grundwasserleiters, in dem als unterirdischer Reaktionsraum die Enteisenung und Entmanganung stattfindet.

Sauerstoffanreicherung Erhöhung der Sauerstoffkonzentration des zu infiltrierenden Wassers mit Luftsauebstoff oder technischem Sauerstoff.

Ergiebigkeitskoeffizient K_E Verhältnis zwischen Fördermenge V_{FOE} und Infiltrationsmenge V_{INF} eines Aufbereitungszyklus.
1 Projektkennblatt der DBU

Projektkennblatt
der
Deutschen Bundesstiftung Umwelt

<table>
<thead>
<tr>
<th>Az</th>
<th>Referat</th>
<th>Fördersumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>18193</td>
<td>32/0</td>
<td>885.052,00 DM</td>
</tr>
</tbody>
</table>

Antragstitel
Optimierung der In-situ-Reaktortechnologie zur dezentralen Trinkwassergewinnung und Grundwasseraufbereitung durch modellhafte Untersuchungen beteiligter Biofilme

Stichworte
Biotechnologie, Wasser, Gewässer, Abwasser, Umweltchemikalien

<table>
<thead>
<tr>
<th>Laufzeit</th>
<th>Projektbeginn</th>
<th>Projektende</th>
<th>Projektphase(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Jahre und 6 Monate</td>
<td>11.06.2001</td>
<td>11.12.2003</td>
<td></td>
</tr>
</tbody>
</table>

Zwischenbericht
11.09.2002, kostenneutrale Verlängerung bis 31.05.04

Bewilligungsempfänger
Universität Stuttgart
Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft
Bandtäle 2
Abt. Wassergütewirtschaft
70569 Stuttgart

<table>
<thead>
<tr>
<th>Tel.</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>0711/685-3711</td>
<td>0711/685-3729</td>
</tr>
<tr>
<td>Projektleitung</td>
<td>Prof. Dr. Ulrich Rott</td>
</tr>
<tr>
<td>Bearbeiter:</td>
<td>C. Meyer, H. Steele, H. Winkelnkemper</td>
</tr>
</tbody>
</table>

Kooperationspartner
- Winkelnkemper GmbH, Wadersloh
- Gerhard Mercator Universität GH Duisburg, FB 6 - Aquatische Mikrobiologie

Zielsetzung und Anlass des Vorhabens
Gegenstand des Forschungsvorhabens ist die Entwicklung und Optimierung dezentraler biotechnologischer In-situ-Reaktoren für die Grundwasseraufbereitung (Entseisenung und Entmanganung) durch Lokalisierung, Isolierung und Untersuchung von Biofilmen, die bei der dezentralen In-situ-Grundwasseraufbereitung eine wesentliche Rolle spielen. Die an den Aufbereitungsprozessen beteiligten Mikroorganismen sollen identifiziert und charakterisiert werden, um Erkenntnisse für die Praxis zu gewinnen, welche das Verfahren hinsichtlich Planung, Bemessung und Betrieb beherrschbar zu machen und für einen Einsatz unter unterschiedlichen Randbedingungen auf eine breite Anwendungsbasis zu stellen. Neben grundlegenden Erkenntnissen zum Betrieb der In-situ-Reaktoren sollen Hinweise gewonnen werden, auf welche Weise die Aktivität der biologischen Vorgänge erhöht werden kann, um die Effizienz des Verfahrens zu steigern.

Darstellung der Arbeitsschritte und der angewandten Methoden (stark verkürzt)

⇒ Planung und Errichtung von 7 Versuchsanlagen an 5 Standorten
⇒ Einfahrbetrieb der In-situ-Reaktoren, wasserchemische Analysen und Entnahme von Bodenproben
⇒ Untersuchung der an der Aufbereitung beteiligten Mikroorganismen (Laser-Scanning-Mikroskopie, 16S-rDNA-Sequenzierungsansatz, Einsatz von speziell weiterzuentwickelnden Gensonden)
⇒ Optimierung der Effektivität der In-situ-Reaktoren unter unterschiedlichen Randbedingungen (Wasser- und Bodenbeschaffenheit, Brunnenausbau) unter Variation der Betriebsparameter auf der Grundlage der wasserchemischen und mikrobiologischen Analysen
⇒ Kurzung der Einfahrzeit der In-situ-Reaktoren durch Versuche zur Animpfung der unterirdischen Reaktionszone
⇒ Diskussion der Versuchsergebnisse und Formulierung von Hinweisen zu Planung und Betrieb der In-situ-Reaktoren
Ergebnisse und Diskussion

Insgesamt wurden während der Projektlaufzeit sieben In-situ-Anlagen an fünf Standorten erstellt, betrieben und durch laufende Probenahme (insgesamt 800 Einzelproben) und Analytik (insgesamt über 63000 Einzelanalysen) kontrolliert.

Öffentlichkeitsarbeit und Präsentation

Fazit

Deutsche Bundesstiftung Umwelt An der Bornau 49090 Osnabrück Tel 0541/9633-0 Fax 0541/9633-190 http://www.dbu.de
2 Anlass und Zielsetzung des Vorhabens

Trinkwasser als wichtigstes Lebensmittel und Voraussetzung für eine gesunde Bevölkerung unterliegt strengen gesetzlichen Auflagen und Regelungen. Als nationale Umsetzung der EG-Trinkwasser-Richtlinie legt die Trinkwasserverordnung (TrinkwV) Grenz- und Richtwerte für Wasserinhalts- und Zusatzstoffe fest, die seitens der Wasserversorger einzuhalten sind.

Der Gehalt an Eisen in reduzierten Grundwässern beträgt in der Regel 1 mg/L bis 10 mg/L, bei hohen CO₂-Werten auch bis zu 40 mg/L bis 50 mg/L. Die Mangankonzentration beträgt i. d. R. etwa ein Fünftel bis ein Zehntel von der des Eisens. Grundwasser stellt in der Bundesrepublik Deutschland die wichtigste Ressource zur Wasserversorgung dar; ca. 70 % bis 80 % des Trinkwassers werden daraus gewonnen.

Zur Vermeidung dieser störenden Wirkungen von erhöhten Eisen- und Mangan-Konzentrationen im Wasser existieren Grenzwerte nach der Trinkwasserverordnung, welche für Trinkwasser 0,2 mg Fe/L und 0,05 mg Mn/L betragen. Diese Grenzwerte einzuhalten bzw. nach dem Minimierungsgebot zu unterschreiten, ist Ziel der Aufbereitung.

Eine effiziente und umweltgerechte Möglichkeit der Enteisenung und Entmanganung von Grundwasser stellt die biologische In-situ-Aufbereitung (In-situ-Reaktoren) als dezentral einsetzbares Verfahren dar.
Gerade die Umweltverträglichkeit dieses Verfahrens kann als wesentlicher Vorteil betrachtet werden:

- Nutzung einer regional vorhandenen Ressource, Vermeidung von räumlichen Umweltexternalitäten
- Bewirtschaftung eines regionalen Grundwasservorkommens
- Vermeidung des Einsatzes von Aufbereitungchemikalien (Herstellung, Transport, Entsorgung)
- Entfallen eisen- und manganhaltiger Schlämme (Rückspülung von Filtern), da die Aufbereitung im Untergrund erfolgt.

Gegenstand des Forschungsvorhabens ist die Lokalisierung, Isolierung und Untersuchung von Biofilmen, die bei der dezentralen In-situ-Grundwasseraufbereitung eine wesentliche Rolle spielen. Die an den Aufbereitungsprozessen beteiligten Mikroorganismen sollen identifiziert und charakterisiert werden, um Erkenntnisse für die Praxis zu gewinnen, welche das Verfahren hinsichtlich Planung, Bemessung und Betrieb beherrschbarer zu machen und für einen Einsatz unter unterschiedlichen Randbedingungen auf eine breite Anwendungsbasis zu stellen. Neben grundlegenden Erkenntnissen zum Betrieb der In-situ-Reaktoren sollen Hinweise gewonnen werden, auf welche Weise die Aktivität der biologischen Vorgänge erhöht werden kann, um die Effizienz des Verfahrens zu steigern.

3 Zusammenfassung

4 Arbeitsschritte und Methoden

4.1 Arbeitsschritte und Methoden bei der Durchführung der In-situ-Aufbereitungsversuche

- Erstellung und Betrieb von zunächst 2 Versuchsanlagen (Standort 1 und Standort 2) mit dem Hauptziel der Gewinnung von eingearbeitetem, biologisch aktivem Material aus den etablierten Reaktionszonen
- Beobachtung der Einarbeitungszeit der Entmanganung und Enteisenung unter Variation der Betriebsprogramme durch regelmäßige Beprobung und Analyse des Förderwassers nach DIN-Vorschriften
- Durchführung von Rammkernsondierungen zur Gewinnung von Bodenproben aus der Reaktionszone der Standorte 1 und 2 für die Etablierung der mikrobiologischen Methoden
- Dokumentation und Bewertung der bisherigen Versuchsergebnisse, Veranstaltung des geplanten Workshops und fachlicher Austausch mit anderen Instituten
- Erstellung und Betrieb von 5 weiteren Versuchsanlagen zur Untersuchung der Auswirkungen von baulichen (Brunnenausbau) und hydrogeologischen Randbedingungen (Beschaffenheit des Untergrunds und des Rohwassers) unter Variation der Betriebsparameter auf die Enteisenung und Entmanganung der Anlagen; regelmäßige Beprobung und Analyse des Förderwassers nach DIN-Vorschriften
- Versuch zweier Animpfungsvarianten der Reaktionszone mit dem Ziel der Verkürzung der Einarbeitungszeit der Entmanganung
- Entnahme weiterer Bodenproben aus der Reaktionszone des Standorte 1 und 2
- Dokumentation und Diskussion aller Ergebnisse mit den Kooperationspartnern, Erstellen eines Abschlussberichtes

4.2 Mikrobiologische Arbeitsschritte und Untersuchungsmethoden

- Um zu bestimmen, ob Eisen- und Mangan-oxidierende Populationen in der Reaktionszone existieren, wurde Material aus einer eingearbeiteten Reaktionszone, d.h. rostfarbenes Sediment, entnommen, auf Eisen- und Mangan-Oxide spezifisch angefärbt und unter dem Mikroskop betrachtet.

Da die Animpfung eines Testbrunnens mit biologisch aktivem Material aus dem Belüftungstank eines Brunnens mit eingearbeiteter Reaktionszone erfolgreich war, erwies es sich als notwendig, die mikrobielle Population des Brunnen mit jener des Belüftungstanks zu vergleichen. Dazu wurde denaturierende Gradienten-Gelelektrophorese (DGGE) durchgeführt. Diese molekularbiologische Methode nutzt DNA aus beiden Quellen. Amplifizierung eines repräsentativen Gens – in diesem Fall ein Teil des 16S rRNA-Gens und Auftren-
5 Beschreibung des Verfahrens der unterirdischen Enteisennung und Entmanganung (UEE) - Stand des Wissens

5.1 Technische Verfahrensbeschreibung

Abbildung 1 zeigt das Verfahrensschema einer Zwei-Brunnen-Anlage zur unterirdischen Aufbereitung.

5.2 Chemisch-physikalische Prozesse

Für die Beschreibung der chemischen-physikalisch Mechanismen, die bei der unterirdischen Enteisenung und Entmanganung in der Reaktionszone ablaufen, kann das Adsorptions-Oxidations-Modell (vgl. Abbildung 3) herangezogen werden.

Wird in einer Förderphase Wasser aus einem Brunnen entnommen, durchströmt das Grundwasser die Reaktionszone und gelöstes Eisen und Mangan werden an den Bodenkornoberflächen adsorbiert (Adsorptionsphase). Bereits gebildetes Eisenoxidhydrat hat hierbei eine positive Wirkung auf das Adsorptionsvermögen. Bei Infiltration von sauerstoffreichem Wasser erreicht Sauerstoff die an den Bodenkornoberflächen adsorbierten Fe$^{2+}$- und Mn$^{2+}$-Ionen und oxidiert sie zu schwer löslichen Oxidhydraten (Oxidationsphase). Im Laufe der Zeit bildet sich so eine Ummantelung aus den Oxidationsprodukten auf den Bodenkörnern, die eine katalytische Wirkung auf die Eisen- und Manganoxidation haben.
Die Redox-Prozesse im Grundwasserleiter und in der Wasseraufbereitungstechnologie sind im Wesentlichen von folgenden Einflussfaktoren abhängig:

- pH-Wert
- Redox-Spannung
- Temperatur
- Druck
- Menge und Zusammensetzung der Wasserinhaltsstoffe
- katalytischen Effekten
- mikrobiologischer Aktivität.

In Abbildung 4 sind die Stabilitätsdiagramme von Eisen und Mangan mit den Stabilitätsfeldern für unterschiedliche Zustandsformen des Eisens und Mangans dargestellt. Es ist deutlich zu erkennen, dass Mn²⁺-Ionen ein größeres Stabilitätsfeld besitzen als Fe²⁺-Ionen. Mangan hat somit im Aquifer eine höhere Mobilität. Die Oxidation von löslichen Fe²⁺-Ionen zu kristallinen Zustandsformen des Eisens wie α-FeOOH, Fe(OH)₃ oder Fe₃O₄ erfolgt bereits bei geringeren pH-Werten bzw. Redox-Spannungen als die Oxidation von Mn²⁺-Ionen zu Mn(OH)₂, Mn₃O₄ oder MnO₂. Eine abiotische Oxidation der Mn²⁺-Ionen durch Sauerstoff ist selbst im neutralen Bereich nahezu unmöglich. Dies hat in der Wasseraufbereitungs-Praxis die Konsequenz, dass eine Entmanganung von Wasser in der Regel auf biotischen, d. h. durch Bakterien katalysierten Oxidationsvorgängen beruht.

5.3 Biologische Prozesse

Durch die regelmäßige Zufuhr von sauerstoffreichem Wasser während der Anreicherungsphase werden die Mikroorganismen stimuliert, d.h. ihre biologische Aktivität steigert sich. Diese Mikroorganismen sind damit in der Lage, bei der Eisen- und Manganoxidation mitzuwirken, einerseits durch die Nutzung der bei den Oxidationsprozessen freiernden Energie für Stoffwechselvorgänge, wie z. B. die CO$_2$-Reduktion, und andererseits durch die Adsorption der Oxidationsprodukte.

Einige Bakterien können reduziertes Eisen in zweiwertiger Form oxidieren oder zu mindest oxidiertes Eisen in die Zelle und Zellwände einlagern. Diese Bakterien können sich sowohl autotroph als auch heterotroph ernähren.

Thiobacillus ferrooxidans oxidiert Eisen(II) bei pH-Werten unter 3. Die freierdende Energie aus der Oxidation wird zum chemolithoautotropen Stoffwechsel genutzt, indem CO₂ oder HCO₃⁻ zu zelleigenem organischem Kohlenstoff reduziert wird.

Gallionella ferruginea kommt bei pH-Werten von 5,6 bis 7,6 vor, bevorzugt jedoch Standorte geringerer Redoxpotenziale (Eh +200 mV bis +320 mV). Bezüglich ihrer Vermehrung ist sie an die Anwesenheit von Eisen(II) gebunden, und ist autotroph.

Die Bakteriengattungen *Sphaerotilus* und *Leptothrix* (bescheidete Bakterien) kommen in großer Zahl an Eisen(II)- und Eisen(III)-haltigen Standorten vor und besitzen die Fähigkeit Eisenoxide an ihren Scheiden abzulagern. Ihre aktive Beteiligung an der Eisenoxidation ist noch nicht vollständig erforscht.

In Ablagerungen von Eisenoxiden, aber auch in Oberflächenwässern und Böden gibt es viele Bakterien, welche sich auf Eisenchelat-haltigen Medien leicht kultivieren lassen. Dort vermehren sie sich in braunen Kolonien und können so quantitativ bestimmt werden.

Festgestellt wurde, dass eine Vielzahl von polymerbildenden Mikroorganismen in der Lage sind katalytisch eine Eisen(II)-Oxidation durchzuführen (DVWK 1988; Mattheß 1990).

Es wurde gezeigt, dass Mikroorganismen die Oxidationsrate von Mangan(II) gegenüber der abiotischen Oxidation um fünf Größenordnungen steigern können (Brouwers et al. 1998).

Tabelle 1 und Tabelle 2 geben einen Überblick der üblichen Eisen- und Manganoxidierenden Bakterien, die Oxidationsmechanismen und die Wachstumsbedingungen.
Tabelle 1: Literatur-Übersicht von Mangan-oxidierenden Bakterien

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Einordnung: Klasse, Ordnung, Familie, Genus</th>
<th>Bedingungen der Mangan-Oxidation</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>aquatisch</td>
<td>Alphaproteobakterien, Rhizobiales, Hyphomicrobiae, Pedomicrobium</td>
<td>Bindung an saure Komponenten der EPS in der frühen bis mittleren exponentiellen Phase, gefolgt von enzymatischer Oxidation. pH-Optimum bei 7,0 (Bereich 5,5-7)</td>
<td>Larsen et al., 1999</td>
</tr>
<tr>
<td>aquatisch</td>
<td>Betaproteobakterien, Burkholderiales, Comonadaceae, Pseudomonas putida</td>
<td>Ablagerung von Manganoxid auf der äußeren Membran; Multikupfer-Oxidase-Enzym-Aktivität, pH-Optimum bei 7 (Bereich 6,5-7)</td>
<td>Brouwers et al., 1999: (Larsen et al., 1999)</td>
</tr>
<tr>
<td>aquatisch</td>
<td>Betaproteobakterien, Burkholderiales, Comamonadaceae, Leptothrix discophora</td>
<td>Bindung an EPS in der stationären Phase, anschließend enzymatische Oxidation. Multikupfer-oxidase-Enzym, Optimum bei pH 7,3 (Bereich 6,0-8,0).</td>
<td>Adams & Ghiorse, 1987; Boogerd & de Vrind, 1987</td>
</tr>
<tr>
<td>Boden</td>
<td>Alphaproteobakteria, Rhizobiales, Rhizobiaceae, Rhizobium etli</td>
<td>Bindung an EPS in der stationären Phase, gefolgt von enzymatischer Oxidation. pH im Medium schwankte von 6,4 bis 7,4 während des Wachstums. Homologe Gene für Multikupfer-Oxidase wurden in einem verwandten Bakterium gefunden: Bradyrhizobium japonicum*</td>
<td>Moy et al., 2003; Pulsawat et al., 2003 * Brouwers et al., 1999</td>
</tr>
<tr>
<td>Boden</td>
<td>Unidentifizierte Manganoxidierende Bakterien</td>
<td>Änderung des externen pH-Wertes von 6,4 auf 8,9-9,1; Bedingungen, die eine Autokatalyse von der Manganoxidation beginnstigen</td>
<td>Moy et al., 2003</td>
</tr>
<tr>
<td>Meerwasser</td>
<td>Firmicutes, Bacillales, Bacillaceae, Bacillus-Sporen</td>
<td>Multikupfer-Oxidase-Enzyme, Optima bei pH 7, Bereich 6,5-7</td>
<td>Bargar et al., 2000</td>
</tr>
</tbody>
</table>
Tabelle 2: Literatur-Übersicht von Eisen-oxidierenden Bakterien

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Einordnung: Genus, Spezies</th>
<th>Bedingungen der Eisen-oxidation</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundwasser</td>
<td>Gamma-Proteobakterien, nah verwandt mit Stenotrophomonas maltophilia</td>
<td>Lithotrophes Wachstum bei pH 7,0 unter mikroaerophilen Bedingungen</td>
<td>Emerson & Moyer, 1997</td>
</tr>
<tr>
<td>Anoxische Böden, Sedimente</td>
<td>Thiobacillus denitrificans (ATCC 25259), Pseudomonas stutzeri (ATCC 14405), Thiomicrospira denitrificans (DSM 1251), Paracoccus denitrificans (DSM 1404)</td>
<td>Denitrifizierende, Eisen-oxidierende Bakterien (Licht-unabhängig, chemotrophe mikrobielle Aktivität mit Nitrat als Elektronen-Akzeptor) Anoxisch, pH 7</td>
<td>Straub et al., 1996</td>
</tr>
<tr>
<td>aquatisch</td>
<td>Beta-Proteobakterien, Nitrosonomadales, Gallionellaceae; Gallionella ferruginea</td>
<td>Eisen- und Mangan-Oxidation, pH 7,0</td>
<td>Czekalla et al., 1985</td>
</tr>
<tr>
<td>Sedimente</td>
<td>Thiobacillus ferroxidans, Leptospirillum ferroxidans</td>
<td>Eisen-Oxidation bei pH 1,6</td>
<td>Blake et al., 1993, Gehrke et al., 1998</td>
</tr>
</tbody>
</table>

5.4 Vor- und Nachteile des Verfahrens

Bei der unterirdischen Aufbereitung entfallen oberirdische Anlagenteile weitgehend und die Betriebskosten beschränken sich im Wesentlichen auf Energiekosten für die Förderung des Grundwassers und auf Personalkosten. Es besteht kein Bedarf an speziellen Aufbereitungsstoffen. Weiterhin fallen keine schlammhaltigen Abwässer aus der Wasseraufbereitung an und infolgedessen entstehen auch keine Kosten für deren umweltgerechte Entsorgung. Somit erweist sich dieses Verfahren in der Regel als kostengünstiges Aufbereitungsverfahren.

In Tabelle 3 sind zusammenfassend Vor- und Nachteile des Verfahrens der unterirdischen Wasseraufbereitung im Unterschied zu dem konventionellen oberirdischen Wasseraufbereitungsverfahren aufgeführt.
<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>• geringer Bauaufwand</td>
<td>• aufwendige hydrogeologische Voruntersuchungen nötig</td>
</tr>
<tr>
<td>• einfache Technologie</td>
<td>• benötigte Infiltrationsmenge ca. 20% - 50% der Fördermenge</td>
</tr>
<tr>
<td>• keine Brunnenverockerung</td>
<td>• Einfahrphase kann lange dauern und erfordert Know-how und Überwachung</td>
</tr>
<tr>
<td>• kein Spülwasser- und Schlammanfall</td>
<td>• Reaktionsraum nicht direkt kontrollierbar</td>
</tr>
<tr>
<td>• kein Spülwasserbedarf</td>
<td></td>
</tr>
<tr>
<td>• weitgehend automatisierbar</td>
<td></td>
</tr>
<tr>
<td>• Betriebskosten nur 20-35% gegenüber der traditionellen Aufbereitung</td>
<td></td>
</tr>
</tbody>
</table>
6 Versuchsstandorte und Versuchsbetrieb

6.1 Anlagenbeschreibung

6.1.1 Standort 1

Abbildung 6: FERMANOX®- Wasseraufbereitungsanlage zur Eisen- und Mangantfernung „Zwei-Brunnen-Anlage“
Die Wasseraufbereitungsanlage wurde wie folgt ausgelegt. Es bestand ein maximaler Tagesverbrauch von 9 m³ (Personen mit Landwirtschaft). Die notwendige Infiltrationsmenge zur Aufrechterhaltung der Reaktionszone betrug 4,4 m³. Somit ergab sich pro Brunnen eine Gesamtfördermenge von 13,4 m³. Eine verbrauchsabhängige Regelung (VAR) regelte die Umschaltung zwischen den beiden Brunnen in Abhängigkeit von der verbrauchten Wassermenge und von der Infiltrationsmenge.

Abbildung 7: In-situ-Anlage Standort 1 (Pumpe, Belüftungsbehälter und Druckbehälter)
6.1.2 Standort 2

Abbildung 8: FERMANOX®- Wasseraufbereitungsanlage zur Eisen- und Mangantfernung „Ein-Brunnen-Anlage“

Der Brunnen wurde durch die Anlagensteuerung wechselweise zur Förderung von Grundwasser und zur Einleitung von mit Sauerstoff angereichertem Wasser betrieben. Die Wasseraufbereitungsanlage wurde wie folgt ausgelegt. Bei einem maximalen Tagesverbrauch von 0,8 m³ und einer Infiltrationsmenge von 0,6 m³ ergab sich eine Gesamtfördermenge von 1,4 m³ pro Aufbereitungzyklus.

Zur Beginn der Aufbereitung erfolgte die Wasserversorgung aus dem Versuchsbrunnen mengenabhängig; in der späteren Versuchsphase erfolgte sie zeitaufhängig. Während der Förderphase wurde eine Wassermenge von ca. 0,6 m³ mittels eines

Abbildung 9: In-situ-Anlage Standort 2 (Pumpe, verbrauchsabhängige Regelung und Belüftungsbehälter)

6.1.3 Standort 3

An Standort 3 in Wadersloh (Nordrhein-Westfalen) wurden insgesamt 3 Versuchsanlagen (Ein-Brunnen-Anlagen) während unterschiedlicher Versuchszeiträume auf demselben Grundstück bzw. mit Brunnen in demselben Aquifer betrieben. Die Anla-
genstandorte wurden demzufolge Standort 3-a, Standort 3-b und Standort 3-c be-nannt. Die relative Lage der dazugehörigen Brunnen zueinander ist in Abbildung 10 dargestellt.

Abbildung 10: Lageplan der Brunnen der Anlagen an Standort 3

Die identischen Anlagenkonfigurationen und der Betrieb der In-situ-Reaktoren in einem homogenen Aquifer waren notwendige Voraussetzungen, um vergleichende Untersuchungen hinsichtlich der Einarbeitszeit der Entmanganung durch die Inokulation der Reaktionszone mit biologisch aktivem Material durchführen zu können (vgl. Kapitel 10.1).
6.1.4 Standort 4

Die Anlage wurde zum Versuch der Aufbereitung von stark eisenhaltigem Wasser, welches zur Beregnung von Rasenflächen eines Sportgeländes genutzt werden sollte, eingesetzt. Die Nutzung des eisenhaltigen Wassers hatte in der Vergangenheit zu...
Schäden an der Sportplatzausstattung (Geländer, Wege, vgl. Abbildung 12) und den Rasenflächen geführt.

Abbildung 12: Rückstände auf Boden und Geländer durch die Beregnung der Rasenflächen mit eisenhaltigem Wasser

Während des Bewässerungszeitraums (Sommer/Herbst) wurde die In-situ-Anlage diskontinuierlich betrieben (verbrauchsabhängige Regelung); während der Wintermonate erfolgte zur Aufrechterhaltung des Versuchsbetriebs ein regelmäßiger, zeitgesteuerter Betrieb.

Der Betrieb der In-situ-Anlage erfolgte asymmetric, d. h. für Brunnen 1 bzw. für Brunnen 2 galten unterschiedliche Aufbereitungszyklen, womit der unterschiedlichen Rohwasserbeschaffenheit (vgl. Kapitel 6.2) Rechnung getragen werden sollte:

- Brunnen 1: Fördermenge pro Zyklus 183 m³, davon planmäßig 100 m³ zum Verbrauch (Entnahme Beregnung) und 83 m³ (O₂-angereichert) zur Infiltration (Rücklauf) in Brunnen 2
- Brunnen 2: Fördermenge pro Zyklus 172 m³, davon planmäßig 100 m³ zum Verbrauch (Entnahme Beregnung) und 72 m³ (O₂-angereichert) zur Infiltration in Brunnen 1.

Nach Erreichen der jeweiligen Gesamtfördermenge (Entnahme aus z. B. Brunnen 1 plus Rücklauf in Brunnen 2), bewirkten Kontaktwasserzähler die jeweilige Umschal-
tung z. B. auf Entnahme aus Brunnen 2 plus Rücklauf in Brunnen 1; dabei war jedoch zu beachten, dass Entnahme aus einem Brunnen und Rücklauf in den anderen Brunnen gleichzeitig stattfanden. Notwendige Bedingung für die Auslösung des Umschaltvorgangs war das Erreichen der jeweiligen Rücklaufmenge (in Brunnen 1: 72 m³ bzw. in Brunnen 2: 83 m³), und hinreichende Bedingung ist das Erreichen der Entnahmemenge für die Beregnung von 100 m³, solange die jeweiligen Rücklaufmengen noch nicht erreicht wurden. Dies bedeutete jedoch, dass die Aufbereitung „überbeansprucht“ werden konnte, wenn innerhalb der Rücklaufzeit bis Erreichen der jeweiligen Rücklaufmengen mehr als die vorgesehenen 100 m³ pro Brunnen zur Beregnung entnommen wurden.

Darüber hinaus wurden die Brunnen unterschiedlich ausgebaut. Brunnen 1 (DN 200) verfügte über eine durchgehende Filterstrecke von 10 m Länge (Abbildung 13). Brunnen 2 (DN 200) wurde entgegen den Empfehlungen des Instituts für Siedlungs­wasserbau anstelle mit einer 8 m langen Filterstrecke ebenfalls mit einer 10 m langen Filterstrecke, welche zudem durch ein Vollrohrstück unterbrochen wurde und im oberen Abschnitt in einem stark durchlässigen Bodenbereich (Grobkies, Feinkies, Steine, Hangschutt, vgl. Abbildung 14) lag, ausgebaut.
Abbildung 13: Brunnenausbau und Bohrprofil Brunnen 1, Standort 4
Abbildung 14: Brunnenausbau und Bohrprofil Brunnen 2, Standort 4
6.1.5 Standort 5

6.2 Rohwasserbeschaffenheit

6.2.1 Standort 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Symbol</th>
<th>Wasserprobe Brunnen 1</th>
<th>Wasserprobe Brunnen 2</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen, ges.</td>
<td>mg/L</td>
<td>Fe</td>
<td>9,01</td>
<td>10,8</td>
<td>0,2</td>
</tr>
<tr>
<td>Mangan, ges.</td>
<td>mg/L</td>
<td>Mn</td>
<td>0,67</td>
<td>0,60</td>
<td>0,05</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/L</td>
<td>NH₄⁺</td>
<td>0,316</td>
<td>0,332</td>
<td>0,5</td>
</tr>
<tr>
<td>Nitrit</td>
<td>mg/L</td>
<td>NO₂⁻</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>0,1</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>mg/L</td>
<td>O₂</td>
<td>0,5</td>
<td>0,6</td>
<td>-</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mg/L</td>
<td>NO₃⁻</td>
<td>< 5</td>
<td>< 5</td>
<td>50</td>
</tr>
<tr>
<td>KMnO₄-Verbrauch</td>
<td>mg/L</td>
<td>KMnO₄</td>
<td>26,2</td>
<td>26,9</td>
<td>20</td>
</tr>
<tr>
<td>Karbonathärte</td>
<td>°dH / mmol/L</td>
<td>KH</td>
<td>21,5 / 3,9</td>
<td>22,0 / 3,9</td>
<td>-</td>
</tr>
<tr>
<td>Gesamthärte</td>
<td>°dH / mmol/L</td>
<td>GH</td>
<td>32,5 / 5,8</td>
<td>33,0 / 5,9</td>
<td>-</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>-</td>
<td>pH</td>
<td>6,82</td>
<td>6,84</td>
<td>6,5 - 9,5</td>
</tr>
</tbody>
</table>
6.2.2 Standort 2

Zudem ließ der relativ hohe KMnO₄-Verbrauch auf eine organische Belastung des Wassers schließen.

Tabelle 5: Rohwasseranalyse Standort 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Symbol</th>
<th>Wasserprobe Brunnen</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen, ges.</td>
<td>mg/L</td>
<td>Fe</td>
<td>21,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Mangan, ges.</td>
<td>mg/L</td>
<td>Mn</td>
<td>0,38</td>
<td>0,05</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/L</td>
<td>NH₄⁺</td>
<td>0,288</td>
<td>0,5</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>mg/L</td>
<td>O₂</td>
<td>0,5</td>
<td>-</td>
</tr>
<tr>
<td>Nitrit</td>
<td>mg/L</td>
<td>NO₂⁻</td>
<td>0,001</td>
<td>0,1</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mg/L</td>
<td>NO₃⁻</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>KMnO₄-Verbrauch</td>
<td>mg/L</td>
<td>KMnO₄</td>
<td>33,6</td>
<td>20</td>
</tr>
<tr>
<td>Karbonathärte</td>
<td>°dH / mmol/L</td>
<td>KH</td>
<td>2,2 / 0,4</td>
<td>-</td>
</tr>
<tr>
<td>Gesamthärte</td>
<td>°dH / mmol/L</td>
<td>GH</td>
<td>8,5 / 1,5</td>
<td>-</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>-</td>
<td>pH</td>
<td>6,31</td>
<td>6,5 - 9,5</td>
</tr>
</tbody>
</table>

6.2.3 Standort 3

Die Rohwasseranalyse an Standort 3, die aufgrund der dichten Lage für alle Brunnenstandorte 3-a, 3-b und 3-c gültig war, wies keine Besonderheiten auf. Es lagen lediglich ein erhöhter Eisen- und Mangangehalt (Tabelle 6) vor, so dass keine grundsätzlichen Schwierigkeiten mit dem Verfahren der In-situ-Aufbereitung zu erwarten waren. Der Standort 3 mit seinen drei Versuchsanlagen war somit zur gezielten Erprobung der Verkürzung der Einfahrzeit der Entmanganung von In-situ-Reaktoren durch Inokulation der Reaktionszone geeignet.
Tabelle 6: Rohwasseranalyse Standort 3-a, 3-b und 3-c

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Symbol</th>
<th>Wasserprobe Brunnen 3-a, 3-b u. 3-c</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen, ges.</td>
<td>mg/L</td>
<td>Fe</td>
<td>4,92</td>
<td>0,2</td>
</tr>
<tr>
<td>Mangan, ges.</td>
<td>mg/L</td>
<td>Mn</td>
<td>0,40</td>
<td>0,05</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/L</td>
<td>NH₄⁺</td>
<td>0,406</td>
<td>0,5</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>mg/L</td>
<td>O₂⁻</td>
<td>0,5</td>
<td>-</td>
</tr>
<tr>
<td>Nitrit</td>
<td>mg/L</td>
<td>NO₂⁻</td>
<td>0,04</td>
<td>0,1</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mg/L</td>
<td>NO₃⁻</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>KMnO₄-Verbrauch</td>
<td>mg/L</td>
<td>KMnO₄</td>
<td>10,3</td>
<td>20</td>
</tr>
<tr>
<td>Karbonathärte</td>
<td>°dH / mmol/L</td>
<td>KH</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gesamthärte</td>
<td>°dH / mmol/L</td>
<td>GH</td>
<td>27,9 / 5,0</td>
<td>-</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>-</td>
<td>pH</td>
<td>6,94</td>
<td>6,5 - 9,5</td>
</tr>
</tbody>
</table>

6.2.4 Standort 4

Das reduzierte Rohwasser wies sehr hohe Eisengehalte und Mangangehalte auf (Tabelle 7). Durch die vorliegende hohe Wasserhärte bestand eine Pufferkapazität, die einer durch die Aufbereitungsprozesse möglichen Absenkung des pH-Werts entgegen wirkt.

Aufgrund der erhöhten Ammoniumgehalte bei Brunnen 2 sowie des erhöhten KMnO₄-Verbrauchs bei Brunnen 1 war mit einem hohen Sauerstoffverbrauch bei den Oxidationsprozessen zu rechnen.

Tabelle 7: Rohwasseranalyse Standort 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Symbol</th>
<th>Wasserprobe Brunnen 1</th>
<th>Wasserprobe Brunnen 2</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen, ges.</td>
<td>mg/L</td>
<td>Fe</td>
<td>10,1</td>
<td>10,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Mangan, ges.</td>
<td>mg/L</td>
<td>Mn</td>
<td>0,94</td>
<td>1,56</td>
<td>0,05</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/L</td>
<td>NH₄⁺</td>
<td>0,77</td>
<td>1,48</td>
<td>0,5</td>
</tr>
<tr>
<td>Nitrit</td>
<td>mg/L</td>
<td>NO₂⁻</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>0,1</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>mg/L</td>
<td>O₂⁻</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>-</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mg/L</td>
<td>NO₃⁻</td>
<td>< 1</td>
<td>< 5</td>
<td>50</td>
</tr>
<tr>
<td>KMnO₄-Verbrauch</td>
<td>mg/L</td>
<td>KMnO₄</td>
<td>23,2</td>
<td>12,8</td>
<td>20</td>
</tr>
<tr>
<td>Karbonathärte</td>
<td>°dH / mmol/L</td>
<td>KH</td>
<td>10,1 / 1,8</td>
<td>23 / 4,1</td>
<td>-</td>
</tr>
<tr>
<td>Gesamthärte</td>
<td>°dH / mmol/L</td>
<td>GH</td>
<td>31,4 / 5,6</td>
<td>33,5 / 6,0</td>
<td>-</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>-</td>
<td>pH</td>
<td>7,0</td>
<td>6,79</td>
<td>6,5 - 9,5</td>
</tr>
</tbody>
</table>
6.2.5 Standort 5

Tabelle 8: Rohwasseranalyse Standort 5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Symbol</th>
<th>Wasserprobe Brunnen</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen, ges.</td>
<td>mg/L</td>
<td>Fe</td>
<td>4,68</td>
<td>0,2</td>
</tr>
<tr>
<td>Mangan, ges.</td>
<td>mg/L</td>
<td>Mn</td>
<td>0,67</td>
<td>0,05</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/L</td>
<td>NH₄⁺</td>
<td>0,08</td>
<td>0,5</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>mg/L</td>
<td>O₂</td>
<td>1,5</td>
<td>-</td>
</tr>
<tr>
<td>Sulfat</td>
<td>mg/L</td>
<td>SO₄²⁻</td>
<td>102</td>
<td>240</td>
</tr>
<tr>
<td>Nitrit</td>
<td>mg/L</td>
<td>NO₂⁻</td>
<td>< 0,01</td>
<td>0,1</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mg/L</td>
<td>NO₃⁻</td>
<td>< 1</td>
<td>50</td>
</tr>
<tr>
<td>KMnO₄-Verbrauch</td>
<td>mg/L</td>
<td>KMnO₄</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Karbonathärte</td>
<td>°dH / mmol/L</td>
<td>KH</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gesamthärte</td>
<td>°dH / mmol/L</td>
<td>GH</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>-</td>
<td>pH</td>
<td>7,2</td>
<td>6,5 - 9,5</td>
</tr>
</tbody>
</table>

6.3 Betriebsprogramme

6.3.1 Standort 1

Tabelle 9 zeigt die Betriebsprogramme A und B mit denen die Versuchsanlage an Standort 1 während der Versuchszeiträume gefahren wurde. Bei Betriebsprogramm B wurde der unterirdische Reaktionsraum durch die Erhöhung der Infiltrationsmenge vergrößert. Der Ergiebigkeitskoeffizient K_E der Aufbereitung wurde in Betriebsprogramm B gegenüber Betriebsprogramm A durch die Veränderung der Infiltrations- und Fördermenge geringfügig verringert.
Tabelle 9: Betriebsprogramme der In-situ-Anlage an Standort 1 (Brunnen 1 und 2)

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17.10.01 - 08.02.02</td>
<td>1 - 114</td>
<td>13,4</td>
<td>4,4</td>
</tr>
<tr>
<td>B</td>
<td>09.02.02 - dato</td>
<td>115 - 203</td>
<td>14,2</td>
<td>5,2</td>
</tr>
</tbody>
</table>

6.3.2 Standort 2

Tabelle 10 gibt eine Übersicht über die Betriebsprogramme A, B, C und D mit denen die Versuchsanlage an Standort 2 während der Versuchzeiträume gefahren wurde. Bei den Betriebsprogrammen A, B und C wurde der Ergiebigkeitskoeffizient KE der Aufbereitung durch die Verringerung der Fördermengen und Beibehaltung der Infiltrationsmengen variiert. Betriebsprogramm D entspricht Betriebsprogramm C, wobei zur Aufhärtung des sehr weichen (1,52 mmol/L) und relativ sauren Wassers (pH 6,3) eine Filtration über Calcit im Druckbehälter vorgenommen wurde.

Tabelle 10: Betriebsprogramme der In-situ-Anlage an Standort 2

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dauer: 17.10.01 - 06.12.01</td>
<td>1 - 53</td>
<td>1,4</td>
<td>0,6</td>
</tr>
<tr>
<td>B</td>
<td>Dauer: 07.12.01 - 23.04.02</td>
<td>54 - 190</td>
<td>1,2</td>
<td>0,6</td>
</tr>
<tr>
<td>C</td>
<td>Dauer: 24.04.02 – 25.10.02</td>
<td>191 - 314</td>
<td>1,0</td>
<td>0,6</td>
</tr>
<tr>
<td>D (Filtration über Calcit)</td>
<td>Dauer: 24.04.02 – 25.10.02</td>
<td>315 - 384</td>
<td>1,0</td>
<td>0,6</td>
</tr>
</tbody>
</table>

6.3.3 Standort 3

Tabelle 11: Betriebsprogramme der In-situ-Anlage an Standort 3-a

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>Kₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 - 164</td>
<td>2,25</td>
<td>0,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Dauer: 19.06.03 - 01.12.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 12: Betriebsprogramme der In-situ-Anlage an Standort 3-b

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>Kₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 - 164</td>
<td>2,25</td>
<td>0,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Dauer: 19.06.03 - 01.12.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (Dauerbelastung)</td>
<td>1</td>
<td>200</td>
<td>0,9</td>
<td>222</td>
</tr>
<tr>
<td>Dauer: 17.03.04 - 14.04.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 13: Betriebsprogramme der In-situ-Anlage an Standort 3-c

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>Kₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 - 72</td>
<td>2,25</td>
<td>0,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Dauer: 10.12.03 - 15.05.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.4 Standort 4

Tabelle 14 und Tabelle 15 zeigen die Betriebsprogramme, mit denen die In-situ-Anlage an Standort 4 bzw. die Brunnen 1 und Brunnen 2 der Anlage (asymmetrischer Betrieb) während des gesamten Versuchzeitraums gefahren wurde.

Tabelle 14: Betriebsprogramm der In-situ-Anlage an Standort 4, Brunnen 1

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>Kₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 - ...</td>
<td>183</td>
<td>72</td>
<td>2,5</td>
</tr>
<tr>
<td>Dauer: 23.07.03 - dato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 15: Betriebsprogramm der In-situ-Anlage an Standort 4, Brunnen 2

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>Kₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 - ...</td>
<td>172</td>
<td>83</td>
<td>2,1</td>
</tr>
<tr>
<td>Dauer: 23.07.03 - dato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.3.5 Standort 5

<table>
<thead>
<tr>
<th>Betriebsprogramm</th>
<th>Zyklus</th>
<th>Fördermenge [m³]</th>
<th>Infiltrationsmenge [m³]</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dauer: 05.07.03 - 28.10.03</td>
<td>1 - 117</td>
<td>4,6</td>
<td>2,3</td>
</tr>
<tr>
<td>B</td>
<td>Dauer: 29.10.03 - 27.11.04</td>
<td>118 - 147</td>
<td>3,2</td>
<td>0,9</td>
</tr>
<tr>
<td>C</td>
<td>Dauer: 28.11.04 - 20.04.04</td>
<td>148 - 290</td>
<td>3,7</td>
<td>1,4</td>
</tr>
<tr>
<td>D (nach H₂O₂-Zugabe)</td>
<td>Dauer: 21.04.04 - dato</td>
<td>291 - 349</td>
<td>3,7</td>
<td>1,4</td>
</tr>
</tbody>
</table>

6.4 Beschaffenheit des Untergrunds

6.4.1 Standort 1

Die Bodenbeschaffenheit bei Versuchsstandort 1 ist in nachfolgender Abbildung 15 (Bodenansprache) dargestellt. Es handelt sich um einen sandigen bis feinsandigen Aquifer.
Abbildung 15: Bodenansprache Versuchsstandort 1
6.4.2 Standort 2

Die Bodenbeschaffenheit bei Versuchsstandort 2 ist in Abbildung 16 (Bodenansprache) dargestellt. Aufgrund des lockeren, sandigen Materials kam es jedoch bei allen Sondierungen zu einem Kernverlust zwischen -4 m bis -10 m unter GOK. Generell handelt es sich um einen sandigen bis feinsandigen Aquifer.

Abbildung 16: Bodenansprache Versuchsstandort 2
6.4.3 Standort 3

Die Bodenbeschaffenheit bei Versuchsstandort 3 ist in Abbildung 17 dargestellt. Der Aquifer kann als feinsandig bis schluffig bezeichnet werden.

Abbildung 17: Bodenansprache Versuchsstandort 3-b

6.4.4 Standort 4

Der Aquifer im Bereich beider Brunnen kann als sandig bis kiesig bezeichnet werden. Die Bodenbeschaffenheit bei Versuchsstandort 3 ist in Abbildung 18 dargestellt. In der Umgebung von Brunnen 2 weist der Aquifer zwischen -6,3 m bis -11,5 m unter GOK einen Bereich auf, der im Vergleich zu den anderen Bodenschichten stärker wasserdurchlässig ist. Dieser Bereich wird von kiesigen und sogar steinigen Anteilen dominiert; sandige Anteile sind gering.
Die erhöhte Wasserdurchlässigkeit in einem bestimmten Aquiferbereich und die geringere spezifische Adsorptions-Oberfläche von kiesigen/steinigen Bodenschichten war für die In-situ-Aufbereitung an diesem Standort als nachteilig einzuschätzen.

Abbildung 18: Bodenansprache Versuchsstandort 4, (A) Bereich Brunnen 1, (B) Bereich Brunnen 2
6.4.5 Standort 5

6.5 Reaktionszone

6.5.1 Standort 1

In Tabelle 17 sind die Betriebsparameter für Brunnen 1 und 2 (gleicher Ausbau) sowie die rechnerischen Reaktionsvolumina bzw. -radien und Filteraustrittsgeschwindigkeiten zusammengefasst. Volumina und Radien der idealisierten Reaktionszone sind vom jeweiligen Betriebsprogramm abhängig, das durch unterschiedliche Infiltrations- und Förderzeiten gekennzeichnet ist.
Tabelle 17: Betriebsparameter, Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten der Brunnen 1 und 2 (gleicher Ausbau) an Standort 1 in Abhängigkeit der Betriebsprogramme

<table>
<thead>
<tr>
<th>Betriebsparameter</th>
<th>Betriebsprogramm</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Ergiebigkeitskoeffizient [-]</td>
<td>3,1</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>Infiltrationszeit [h]</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Infiltrationsvolumenstrom [m³/h]</td>
<td>0,43</td>
<td>0,43</td>
<td></td>
</tr>
<tr>
<td>Einleitungsvolumen [m³]</td>
<td>4,4</td>
<td>5,2</td>
<td></td>
</tr>
<tr>
<td>Fördervolumen [m³]</td>
<td>13,4</td>
<td>14,4</td>
<td></td>
</tr>
<tr>
<td>Porosität (geschätzt) [-]</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunnendurchmesser (Filter)</td>
<td>3"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filterstreckenlänge [m]</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filteraustrittsgeschwindigkeit [m/h]</td>
<td>0,6</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Volumen Reaktionszone [m³]</td>
<td>12,4</td>
<td>14,8</td>
<td></td>
</tr>
<tr>
<td>Radius Reaktionszone [m]</td>
<td>1,1</td>
<td>1,3</td>
<td></td>
</tr>
</tbody>
</table>

6.5.2 Standort 2

In Tabelle 18 sind die Betriebsparameter des Brunnen der rechnerischen Reaktionsvolumina bzw. -radien und Filteraustrittsgeschwindigkeiten zusammengefasst. In vorliegendem Fall wurden die Betriebsparameter Infiltrationszeit und Infiltrationsvolumenstrom während der Betriebsprogramme A, B und C nicht verändert, d. h. Volumen und Radius der Reaktionszone sind bei allen Betriebsprogrammen gleich.

Tabelle 18: Betriebsparameter und Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten des Brunnen an Standort 2 in Abhängigkeit der Betriebsprogramme

<table>
<thead>
<tr>
<th>Betriebsparameter</th>
<th>Betriebsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Ergiebigkeitskoeffizient [-]</td>
<td>2,3</td>
</tr>
<tr>
<td>Infiltrationszeit [h]</td>
<td>0,9</td>
</tr>
<tr>
<td>Infiltrationsvolumenstrom [m³/h]</td>
<td>0,6</td>
</tr>
<tr>
<td>Infiltrationsvolumen [m³]</td>
<td>0,6</td>
</tr>
<tr>
<td>Fördervolumen [m³]</td>
<td>1,4</td>
</tr>
<tr>
<td>Porosität (geschätzt) [-]</td>
<td>0,35</td>
</tr>
<tr>
<td>Brunnendurchmesser (Filter)</td>
<td>3"</td>
</tr>
<tr>
<td>Filterstreckenlänge [m]</td>
<td>2</td>
</tr>
<tr>
<td>Filteraustrittsgeschwindigkeit [m/h]</td>
<td>3,1</td>
</tr>
<tr>
<td>Volumen Reaktionszone [m³]</td>
<td>1,6</td>
</tr>
<tr>
<td>Radius Reaktionszone [m]</td>
<td>0,5</td>
</tr>
</tbody>
</table>
6.5.3 Standort 3

Tabelle 19 enthält die Betriebsparameter der zu den Anlagen 3-a, 3-b und 3-c zugehörigen Brunnen sowie die rechnerischen Reaktionsvolumina bzw. -radien und Filteraustrittsgeschwindigkeiten. Alle Brunnen besaßen den gleichen Ausbau. Die In-situ-Reaktoren 3-a, 3-b und 3-c wurden alle mit denselben, während der Versuchszeit nicht varierten Betriebsparametern hinsichtlich Wasserförderung und Wasserinfiltration gefahren, um vergleichende Aussagen über die Einarbeitungszeit der „angeimpften“ Standorte 3-a und 3-c gegenüber dem „nicht-angeimpften“ Standort 3-b zu ermöglichen. Eine Ausnahme hinsichtlich des Versuchsparameters Fördervolumen bildete der Dauerbelastungs-Versuch, der in Kapitel 7.2.3.2 beschrieben wird. Dieser Versuch hatte jedoch keinen Einfluss auf das Volumen oder den Radius der Reaktionszone.

Tabelle 19: Betriebsparameter und Reaktionsvolumina/-radien und Filteraustrittsgeschwindigkeiten der Brunnen an Standort 3-a, 3-b und 3-c

<table>
<thead>
<tr>
<th>Betriebsparameter</th>
<th>Brunnen 3-a, 3-b und 3-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergiebigkeitskoeffizient [-]</td>
<td>2,5</td>
</tr>
<tr>
<td>Infiltrationszeit [h]</td>
<td>1</td>
</tr>
<tr>
<td>Infiltrationsvolumenstrom [m³/h]</td>
<td>0,9</td>
</tr>
<tr>
<td>Infiltrationsvolumen [m³]</td>
<td>0,9</td>
</tr>
<tr>
<td>Fördervolumen [m³]</td>
<td>2,25</td>
</tr>
<tr>
<td>Porosität (geschätzt) [-]</td>
<td>0,35</td>
</tr>
<tr>
<td>Brunnendurchmesser (Filter)</td>
<td>3“</td>
</tr>
<tr>
<td>Filterstreckenlänge [m]</td>
<td>1</td>
</tr>
<tr>
<td>Filteraustrittsgeschwindigkeit [m/h]</td>
<td>3,8</td>
</tr>
<tr>
<td>Volumen Reaktionszone [m³]</td>
<td>2,6</td>
</tr>
<tr>
<td>Radius Reaktionszone [m]</td>
<td>0,9</td>
</tr>
</tbody>
</table>

6.5.4 Standort 4

Tabelle 20 enthält die Betriebsparameter der Brunnen 1 und 2 sowie die rechnerischen Reaktionsvolumina bzw. -radien und Filteraustrittsgeschwindigkeiten. Die unterschiedlichen Volumina und Radien der Reaktionszone resultieren aus dem „asymmetrischen“ Betrieb der In-situ-Anlage, bei dem Brunnen 1 eine Infiltrationsmenge von 72 m³ bzw. Brunnen 2 eine Infiltrationsmenge von 83 m³ pro Aufbereitungszyklus erhält.
Tabelle 20: Betriebsparameter und Reaktionsvolumina/radien und Filteraustrittsgeschwindigkeiten der Brunnen 1 und 2 an Standort 4

<table>
<thead>
<tr>
<th>Betriebsparameter</th>
<th>Brunnen 1</th>
<th>Brunnen 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergiebigkeitskoeffizient [-]</td>
<td>2,5</td>
<td>2,1</td>
</tr>
<tr>
<td>Infiltrationszeit [h]</td>
<td>18</td>
<td>20,8</td>
</tr>
<tr>
<td>Infiltrationsvolumenstrom [m³/h]</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Infiltrationsvolumen [m³]</td>
<td>72</td>
<td>83</td>
</tr>
<tr>
<td>Fördervolumenstrom [m³/h]</td>
<td>25 - 30</td>
<td>25 - 30</td>
</tr>
<tr>
<td>Fördervolumen [m³]</td>
<td>183</td>
<td>172</td>
</tr>
<tr>
<td>Porosität (geschätzt) [-]</td>
<td>0,35</td>
<td>0,35</td>
</tr>
<tr>
<td>Brunnendurchmesser</td>
<td>DN 200</td>
<td>DN 200</td>
</tr>
<tr>
<td>Filterstreckenlänge [m]</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Filteraustrittsgeschwindigkeit [m/h]</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Volumen Reaktionszone [m³]</td>
<td>206</td>
<td>237</td>
</tr>
<tr>
<td>Radius Reaktionszone [m]</td>
<td>2,6</td>
<td>2,7</td>
</tr>
</tbody>
</table>

6.5.5 Standort 5

In Tabelle 14 sind die Betriebsparameter des Brunnen sowohl die rechnerischen Reaktionsvolumina bzw. -radien und Filteraustrittsgeschwindigkeiten zusammengefasst. Volumina und Radien der idealisierten Reaktionszone hängen von den Betriebsprogrammen A, B und C ab, die durch unterschiedliche Infiltrations- und Fördervolumina gekennzeichnet sind.

Tabelle 21: Betriebsparameter und Reaktionsvolumina/radien und Filteraustrittsgeschwindigkeiten des Brunnen an Standort 5 in Abhängigkeit der Betriebsprogramme

<table>
<thead>
<tr>
<th>Betriebsparameter</th>
<th>Betriebsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Ergiebigkeitskoeffizient [-]</td>
<td>2,0</td>
</tr>
<tr>
<td>Infiltrationszeit [h]</td>
<td>2,6</td>
</tr>
<tr>
<td>Infiltrationsvolumenstrom [m³/h]</td>
<td>0,9</td>
</tr>
<tr>
<td>Infiltrationsvolumen [m³]</td>
<td>2,3</td>
</tr>
<tr>
<td>Fördervolumen [m³]</td>
<td>4,6</td>
</tr>
<tr>
<td>Porosität (geschätzt) [-]</td>
<td>0,35</td>
</tr>
<tr>
<td>Brunnendurchmesser</td>
<td>DN 115</td>
</tr>
<tr>
<td>Filterstreckenlänge [m]</td>
<td>4</td>
</tr>
<tr>
<td>Filteraustrittsgeschwindigkeit [m/h]</td>
<td>0,6</td>
</tr>
<tr>
<td>Volumen Reaktionszone [m³]</td>
<td>6,6</td>
</tr>
<tr>
<td>Radius Reaktionszone [m]</td>
<td>0,7</td>
</tr>
</tbody>
</table>
6.6 Entnahme von Bodenproben

6.6.1 Standort 1 und 2

An beiden Versuchsstandorten wurden am 07.08.02 und 08.08.02 Rammkernsondierungen durchgeführt, um Bodenmaterial aus der Reaktionszone, die sich modellhaft betrachtet (vgl. Kapitel 6.5) zylinderförmig um die Filterstrecke des Brunnens ausbildet, zu gewinnen.

Das Hauptziel der Entnahme der Bodenproben an den Standorten 1 und 2 war die Gewinnung von einer ausreichenden und repräsentativen Menge an Versuchsmaterial aus eingearbeiteten Reaktionszonen. An Standort 1 war zum Probenahmezeitpunkt die Enteisenung und Entmanganung abgeschlossen; an Standort 2 nur die Enteisenung. Mit dem zu Verfügung stehenden biologisch aktiven Bodenmaterial wurden zunächst die mikrobiologischen bzw. gentechnischen Methoden erarbeitet, um Aussagen über die an den Aufbereitungsprozessen beteiligten Mikroorganismen und über die Verteilung der mikrobiologischen Aktivität in der Reaktionszone machen zu können (Bereiche der Enteisenung und Entmanganung). Die notwendigen mikrobiologischen Methoden zu Kultivierung und Identifizierung der Eisen- und Mangan-Oxidierer werden in Kapitel 8 ausführlich beschrieben.

Alle Bodenproben wurden unter möglichst sterilen Bedingungen entnommen und sofort nach der Entnahme entsprechend der späteren Untersuchungsmethodik konserviert. Als Referenzprobe wurde jeweils eine Probe in ausreichender Entfernung von dem Brunnen bzw. der Reaktionszone entnommen, um sicherzustellen, dass keine Beeinflussung durch die Aufbereitungsprozesse vorlag.

Abbildung 19 und Abbildung 20 zeigen die Entnahmestellen der Bodenproben durch die Rammkernsondierungen.
RAMMKERNSONDIERUNGEN STANDORT 1, BRUNNEN 2
UNMASSSTÄBLICH

SCHNITT

Date: 08.08.02
Weather cond.: 20° C, no rain

Abbildung 19: Rammkernsondierungen Standort 1, Brunnen 2, unmaßstäblich
RAMMKERNSONDIERUNGEN STANDORT 2, BRUNNEN
UNMASSSTÄBLICH

SCHNITT

Date: 07.08.02
Weather cond.: 20° C, no rain

Abbildung 20: Rammkernsondierungen Standort 2, unmaßstäblich
6.6.2 Standort 3

Letztendlich musste der Versuch der Bodenproben-Entnahme an Standort 3-c auf lediglich eine Stelle im Abstand von ca. 15 cm vom Rand des Brunnen beschränkt werden. Es konnte dabei nur eine sehr geringe Menge an Bodenmaterial aus der inneren Reaktionszone gewonnen und später mikrobiologisch untersucht werden.
6.7 Entnahme von Sedimentproben aus dem Belüftungsbehälter von Standort 3-a

Bei der Anlage an Standort 3-c handelt es sich um diejenige Aufbereitungs-Anlage, die bis zur Beendigung der Versuche an Standort 3-a eingesetzt wurde.
Vom Boden des Speicherbehälters dieser Anlage wurden Sedimentproben genommen, die in gleicher Weise wie die Bodenproben analysiert wurden.
7 Ergebnisse der Aufbereitungsversuche

7.1 Aufbereitungsziel

Vorrangiges Ziel der Grundwasseraufbereitung mit den biologischen In-situ-Reaktoren war die Entfernung von Eisen und Mangan gemäß den Vorgaben der Trinkwasserverordnung (TrinkwV) und dem allgemein gültigen Minimierungsgebot. Der Schwerpunkt lag daher auf der Untersuchung dieser beiden Parameter.

Nach der Trinkwasserverordnung gelten die Grenzwerte für Eisen und Mangan nach Tabelle 22. Hierbei wird zwischen Anlagen mit einer Abgabe über 1000 m³/Jahr und Anlagen mit einer Abgabe bis zu 1000 m³/Jahr unterschieden. Bei letzteren bleiben geogen bedingte Überschreitungen des Eisen- bzw. Mangangehalts bis zu einem Grenzwert von 0,5 mg/L bzw. 0,2 mg/L außer Betracht.

Dennoch stellte die möglichst vollständige Entfernung von Eisen und Mangan auch bei den In-situ-Reaktoren, die eine geringere Wassermenge als 1000 m³/Jahr aufbereiten bzw. abgeben, d. h. die Anlagen an den Standorten 2, 3 und 5, das angestrebte Ziel dar.

Tabelle 22: Grenzwerte für Eisen und Mangan nach TrinkwV

<table>
<thead>
<tr>
<th>Jährliche Abgabemenge</th>
<th>bis 1000 m³/Jahr</th>
<th>über 1000 m³/Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen in mg/L</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>Mangan in mg/L</td>
<td>0,2</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Von besonderem Interesse war die Einarbeitungszeit der Entmanganung der In-situ-Reaktoren. Sie kann mehrere Monate betragen und somit die Wirtschaftlichkeit und die Einsatzmöglichkeit dieser Aufbereitungstechnik wesentlich bestimmen. Versuche zur Beeinflussung (Verkürzung) der Einarbeitungszeit durch Inokulation der unterirdischen Reaktionszone wurden an Anlagenstandort 3 durchgeführt.
7.2 Enteisenung und Entmanganung

7.2.1 Standort 1

7.2.1.1 Brunnen 1

Bereits nach den ersten sieben Aufbereitungszyklen (Abbildung 22) bzw. nach der ersten Betriebswoche Abbildung 23) konnte der hohe Eisen-Gehalt des Rohwassers von über 9 mg/L unter den Eisen-Grenzwert von 0,2 mg/L reduziert werden und während des verbleibenden Versuchszeitraums nahezu dauerhaft unterschritten werden. Das Aufbereitungsziel hinsichtlich der Enteisenung wurde somit bereits innerhalb des Betriebsprogramms A (BP A) erreicht, wenngleich das Förderwasser noch nicht als eisenfrei bezeichnet werden konnte. Erhöhte Eisenkonzentrationen um den Betriebstag 140 und 147 sind möglicherweise auf Remobilisierungen von Eisenablagerungen in den Rohrleitungen zurückzuführen.

Aus Abbildung 23 und Abbildung 24, den Darstellungen der Eisen- und Mangankonzentrationsverläufen mit höher aufgelöster Skalierung der Ordinate, ist ersichtlich, dass die Eisen-Konzentrationen während des BP A noch relativ stark zwischen 0,05 mg/L und 0,20mg/L schwankten. Erst nach dem Wechsel zu Betriebprogramm 2 (ab Zyklus 115 bzw. Betriebstag 113) erfolgte eine Stabilisierung der Eisen-Konzentrationen mit Werten um die Nachweisgrenze von 0,05 mg/L. Mit BP B wurde das Infiltrationsvolumen von 4,4 m³ um ca. 20 % auf 5,2 m³ erhöht, das Entnahmervolumen von 9,0 m³ wurde beibehalten. Hiermit wurde eine Vergrößerung der Reaktionszone im Untergrund erreicht. Der Ergiebigkeitskoeffizient verringerte sich infolge dieser Änderung von 3,1 auf 2,7.

Hinsichtlich der Entmanganung wird deutlich (Abbildung 23 und Abbildung 24), dass die Mangan-Konzentrationen während BP A zwischen 0,40 mg/L und 0,50 mg/L schwankten und ein allmähliches Absinken bis auf den Grenzwert von 0,05 mg/L erst nach dem Wechsel zu BP B stattfand. Die Einarbeitung dauerte insgesamt ca. 170 Aufbereitungszyklen. Es ist eindeutig, dass erst nach der Stabilisierung der Eisen-Konzentration und dem Erreichen annähernder Eisenfreiheit die Entmanganung einsetzte. Aufgrund der Wirkung von zweiwertigem Eisen als Reduktionsmittel auf Mangandioxid nach

\[
2 \text{Fe}^{2+} + \text{MnO}_2 + 4 \text{OH}^- + 2 \text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + \text{Mn}^{2+} + 2\text{OH}^-
\]

kann Mangan aus der oxidierten Verbindung remobilisiert werden und wieder in die Lösung übergehen. Eine Aussage über die biologische Aktivität und Wirkung der biologischen Entmanganung kann somit nicht getroffen werden. Es ist denkbar, dass die biologische Entmanganung durch eine ausreichende Menge geeigneter Mikroorganismen, die zur Mangan-Oxidation befähigt sind, bereits eingesetzt hatte, die Man-
gan-Oxidationsprodukte durch das vorhandene zweiwertige Eisen jedoch reduziert wurden und Mangan somit im beprobten Förderwasser nach wie vor nachgewiesen wurde.

Darüber hinaus sind keine Aussagen möglich, ob ein früherer Wechsel zu BP B auch zu einer früher einsetzenden Entmanganung geführt hätte bzw. welchen Zeitraum die Etablierung der entsprechenden Eisen- und Mangan-oxidierenden Mikroorganismen benötigt hatte.

Ein Hauptzweck des Anlagenbetriebs an Standort 1 war die Gewinnung von Bodenproben aus der eingearbeiteten unterirdischen Reaktionszone (nach abgeschlossener Entmanganung). In diesen Bodenproben konnten Eisen- und Mangan-Oxidierer nachgewiesen werden (vgl. Kapitel 8 ff.).

Abbildung 22: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 1 in Abhängigkeit der Aufbereitungszyklen
Abbildung 23: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 1 in Abhängigkeit der Betriebstage

Abbildung 24: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 1 in Abhängigkeit der Aufbereitungszyklen
7.2.1.2 Brunnen 2

Auch für Brunnen 2 gilt, dass der Grenzwert nach 6 bis 7 Aufbereitungzyklen erreicht wurde, die Entmanganung jedoch erst nach Umschaltung auf Betriebsprogramm B und vollständiger Eisenfreiheit des Wassers einsetzte und nach ca. 170 Aufbereitungzyklen abgeschlossen war.

Abbildung 25: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 1 in Abhängigkeit der Aufbereitungszyklen
Eisen- und Mangan-Konzentrationen (Ende d. Förderphasen)
Einfahrphase Brunnen 2 Standort 1

Abbildung 26: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 1 in Abhängigkeit der Betriebstage

Abbildung 27: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 1 in Abhängigkeit der Aufbereitungszyklen
7.2.2 Standort 2

Bereits nach ca. 30 Aufbereitungszyklen (Abbildung 28) konnte der sehr hohe Eisen-Gehalt des Rohwassers von über 16 mg/L auf Werte knapp über dem Eisen-Grenzwert von 0,2 mg/L reduziert werden.

Demzufolge hatte eine weitere Reduzierung der Fördermenge in BP C ab Zyklus 191 keine Verbesserung der Enteisenung und der Entmanganung bewirken. Eine biologische Enteisenung, die theoretisch von manchen Eisen-Oxidierern auch bei sehr niedrigen pH-Werten bewerkstelligt werden kann, fand offensichtlich auch nicht statt.

Erst der Einsatz einer Filtration des Infiltrationswassers über Calcit (BP D ab Zyklus 315) und die damit verbundene Aufhärtung des Wasser führte zum Erfolg. Der pH-Wert stieg auf Werte über 6 an und innerhalb weniger weiterer Aufbereitungszyklen lag eisenfreies Wasser vor. Parallel sanken die Manganwerte von 0,25 mg/L bis nahe an den Grenzwert von 0,05 mg/L.
Folgende Schlüsse lassen sich ziehen:

- die geringe Karbonathärte des Wassers sowie der niedrige und im Verlauf der Aufbereitung weiter absinkende pH-Wert unter 6 waren die limitierenden Faktoren der In-situ-Aufbereitung an Standort 2.

- das nach Einsatz der Calcit-Filtration sehr schnelle Absinken der Mangan-Konzentrationen ist als Beweis zu werten, dass Mangan-Oxidierer in ausreichender Menge vorhanden waren und in Wirklichkeit bereits eine biologische Entmanganung stattfand; die gebildeten Oxidationsprodukte (MnO₂) jedoch durch das vorhandene Fe²⁺ laufend reduziert wurden und in die Lösung zurückgingen; für diese These spricht, dass eine Mangan-Oxidation bei pH < 8,3 (in vorliegendem Fall sogar pH ≤ 6) und Abwesenheit von Katalysatoren wie Bakterien durch O₂ selbst in mehreren Jahren nicht oxidiert wird (Sigg & Stumm, 1994).

- eine biologische Enteisenung bei niedrigem pH fand in vorliegendem Fall nicht statt; die Enteisenung scheint offenbar auch nach längerem Einsatz der In-situ-Aufbereitung (bis Zyklus 303 ca. 10 Monate) hauptsächlich von abiotischen Prozessen dominiert zu sein.

Abbildung 28: Eisen-Konzentrationen und pH-Wert (Einfahrphase) im Förderwasser des Brun­nens an Standort 2 in Abhängigkeit der Aufbereitungszyklen
Abbildung 29: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunness an Standort 2 in Abhängigkeit der Betriebstage

Abbildung 30: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunness an Standort 2 in Abhängigkeit der Aufbereitungszyklen
7.2.3 Standort 3

Die Aufbereitungsversuche an Standort 3 wurden mit dem Ziel durchgeführt, Erkenntnisse über die Wirkung einer Animpfung der Reaktionszone zur Verkürzung der Einfahrphase zu gewinnen. Für die Animpfung lag eine Genehmigung der zuständigen unteren Wasserbehörde vor.

Hierzu wurden drei identische Anlagen am gleichen Standort mit demselben Betriebsprogramm gefahren, um gleiche äußere Randbedingungen zu garantieren. Es wurde wie folgt vorgegangen:

- Anlage 3-a bzw. Standort 3-a wurde mit direkter Animpfung der Reaktionszone betrieben, d. h. die Inokulation der Reaktionszone erfolgte durch direktes Einbringen von biologisch aktiven, zur Mangan-Oxidation fähigen, Mikroorganismen-Populationen (vgl. Kapitel 10.1.1)
- Anlage 3-b bzw. Standort 3-b diente als Kontroll-Standort; hier erfolgte keinerlei Beeinflussung des Einfahr- bzw. Aufbereitungsprozesses
- Anlage 3-c bzw. Standort 3-c wurde mit indirekter Animpfung der Reaktionszone betrieben, indem dieselbe Anlage, die ursprünglich an Standort 3-a verwendet wurde, nach Beendigung der dortigen Einfahrphase bzw. nach erfolgreicher Entmanganung, an Standort 3-c eingesetzt wurde; die im Sediment des Belüftungstanks bzw. in den Rohrleitungen der Anlage befindlichen Mikroorganismen-Populationen sollten auf diese Weise in die Reaktionszone des neuen Standorts 3-c eingetragen werden (vgl. Kapitel 10.1.2)

Bemerkung: Verläufe der Eisen- und Manganwerte in Abhängigkeit der Betriebstage werden bei Standort 3-a, 3-b und 3-c nicht dargestellt, da pro Tag genau ein Zyklus gefahren wurde und die Verläufe somit denjenigen in Abhängigkeit der Aufbereitungszyklen entsprechen.

7.2.3.1 Standort 3-a

Eine Enteisenung bis unter den Grenzwert (0,2 mg/L) fand bei Standort 3-a bereits innerhalb der ersten Aufbereitungszyklen statt. Nach ca. 7 Aufbereitungszyklen war das Förderwasser praktisch eisenfrei (Abbildung 31 und Abbildung 32). Hieraus konnte geschlossen werden, dass das gewählte Betriebsprogramm für die Versuchsdurchführung geeignet war und beibehalten werden konnte.

Die Entmanganung setzte auch an diesem Standort nach vollständig stabiler Eisenfreiheit des Wassers ein, ca. ab Aufbereitungszyklus 76. Nach ca. 150 Zyklen war der Grenzwert für Mangan (0,05 mg/L) erreicht.
Wird die Einfahrphase der Entmanganung an Standort 3-a (direkte Animpfung der Reaktionszone) mit derjenigen an Standort 3-b (Kontrollstandort) verglichen, so zeigt sich keine schnellere Einarbeitung der Entmanganung an Standort 3-a. Die nicht angeimpfte Reaktionszone des Kontrollstandorts 3-b weist eine ähnliche Einarbeitungszeit von ca. 150 Aufbereitungszyklen bis zum Erreichen des Mangan-Grenzwerts auf. Daraus ist zu schließen, dass die direkte Animpfung der Reaktionszone bzw. die Vorgehensweise bei dieser Animpfung keinen positiven Effekt auf die Verkürzung der Einarbeitung der Entmanganung hatte.

Abbildung 31: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-a in Abhängigkeit der Aufbereitungszyklen
7.2.3.2 Standort 3-b

Einfahrphase

Der Verlauf der Enteisenung und Entmanganung an Standort 3-b während der Einfahrphase ist in Abbildung 33 bzw. Abbildung 34 dargestellt. Die Ergebnisse von diesem Standort als Kontrollstandort werden bei der Diskussion der Ergebnisse von Standort 3-a und 3-c in Kapitel 7.2.3.1 bzw. in Kapitel 7.2.3.3 mitbehandelt.
Abbildung 33: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnen an Standort 3-b in Abhängigkeit der Aufbereitungszyklen

Abbildung 34: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnen an Standort 3-b in Abhängigkeit der Aufbereitungszyklen
Dauerbelastungs-Versuch

An Standort 3-b wurde nach erfolgreicher Beendigung der Einfahrphase ein Dauerbelastungsversuch gefahren, der aufzeigen sollte, welche Aufbereitungskapazität hinsichtlich Eisen und Mangan die Anlage bei einer Dauerentnahme von Wasser ohne zwischenzeitliche Infiltration von sauerstoffreichem Wasser hatte.

Der Verlauf der Enteisenung und Entmanganung an Standort 3-b während des Dauerbelastungs-Versuchs ist in Abbildung 35 in Abhängigkeit des Fördervolumens bzw. in Abbildung 36 in Abhängigkeit des Ergiebigkeitskoeffizienten dargestellt.

Die Reaktionszone besaß hinsichtlich der Enteisenung eine hohe Aufbereitungskapazität. Es konnte ca. die 95-fache Menge an Wasser gefördert werden wie infiltriert wurde (KE = 95) bis der Grenzwert von 0,2 mg/L überschritten wurde.

Im Falle des Mangans bestand eine geringe Aufbereitungskapazität der Reaktionszone. Es konnte lediglich die 3-fache Menge an Wasser gefördert werden wie infiltriert wurde (KE = 3) bis der Grenzwert von 0,05 mg/L überschritten wurde. Dies entsprach in etwa der Betriebsprogrammeinstellung während der Einfahrphase mit KE = 2,5.

Abbildung 35: Eisen- und Mangan-Konzentrationen (Dauerbelastung) im Förderwasser des Brunnenstandorts 3-b
7.2.3.3 Standort 3-c

Eine Enteisenung bis unter den Grenzwert (0,2 mg/L) fand bei Standort 3-a bereits innerhalb der ersten drei Aufbereitungszyklen statt. Nach ca. 7 Aufbereitungszyklen war das Förderwasser eisenfrei (Abbildung 37 und Abbildung 38).

Die Entmanganung setzte an diesem Standort 3-c bereits ab Aufbereitungszyklus 8 ein. Nach ca. 80 Zyklen war die Einarbeitungsphase abgeschlossen und der Grenzwert für Mangan (0,05 mg/L) erreicht. Die nicht angeimpfte Reaktionszone des Kontrollstandorts 3-b weist eine Einarbeitungszeit von ca. 150 Aufbereitungszyklen bis zum Erreichen des Mangan-Grenzwerts auf.

Wird die Einfahrphase der Entmanganung dieses Standorts 3-c (indirekte Animpfung der Reaktionszone) mit derjenigen an Standort 3-b (Kontrollstandort) verglichen, so zeigt sich eine wesentlich schnellere Einarbeitung der Entmanganung an Standort 3-c. Die Einfahrphase der Entmanganung wurde nach ca. der Hälfte der Aufbereitungszyklen bzw. in der halben Zeit abgeschlossen.

Daraus ist zu folgern, dass die indirekte Animpfung der Reaktionszone einen positiven Effekt auf die Verkürzung der Einarbeitung der Entmanganung hatte und die Einarbeitungszeit der Anlage mit dieser Maßnahme wesentlich verkürzt werden konnte.
Abbildung 37: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-c in Abhängigkeit der Aufbereitungszyklen

Abbildung 38: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnens an Standort 3-c in Abhängigkeit der Aufbereitungszyklen
7.2.4 Standort 4

An Standort wurde eine Zwei-Brunnen-Anlage mit unterschiedlich ausgebauten Brunnen betrieben. Der vor der Planung der In-situ-Aufbereitung bereits bestehende Brunnen 1 besaß eine durchgehende Filterstrecke vom 10 m Länge (Abbildung 13).

Der zweite, neu errichtete Brunnen verfügte über eine Filterstrecke von ebenfalls 10 m, die jedoch unterbrochen war und im oberen Bereich in einer sehr stark durchlässigen Schicht lag. Brunnen 2 wurde entgegen des Vorschlags des Instituts für Siedlungswasserbau ausgebaut (Abbildung 14). Die Filterstrecke sollte 8 m betragen, durchgehend sein und den stark durchlässigen Bodenbereich nicht durchschneiden.

An diesem Standort konnte gezeigt werden, dass der geeignete Brunnenbaus ein wichtiger Faktor für eine erfolgreiche In-situ-Aufbereitung ist und die Einarbeitungszeit wesentlich beeinflusst.

Im Falle beider Brunnen konnten die relativ hohen Eisenwerte bereits nach wenigen Betriebstagen stark gesenkt werden (Abbildung 39 und Abbildung 43). Danach schwankten die Eisenkonzentrationen bei beiden Brunnen ca. bis Betriebstag 115 unterschiedlich stark. Brunnen 1 wies eine niedrigeres Schwankungsniveau in einer Bandbreite von ca. 0,10 mg/L bis ca. 0,50 mg/L auf, Brunnen 2 ein weitaus höheres Schwankungsniveau mit Werten von ca. 0,20 mg/L bis ca. 2,00 mg/L. Ungefähr ab Betriebstag 115 zeichnete sich bei beiden Brunnen eine abnehmende Tendenz der Eisenwerte ab. Im Falle von Brunnen 1 nahmen die Eisenwerte bis Betriebstag 194 stetig ab, und es wurde mit der zuletzt gemessenen Eisenkonzentration von 0,07 mg/L der Grenzwert weit unterschritten (Abbildung 40); im Falle von Brunnen 2 konnten die Eisengehalte bis Betriebstag 275 lediglich auf ca. 0,60 mg/L reduziert werden (Abbildung 44). Der Eisen-Grenzwert von 0,2 mg/L wird demnach bei Brunnen 2 noch um das 3-fache überschritten.

Die Entmanganung setzte bei beiden Brunnen parallel mit den stetig abnehmenden Eisenwerten ein (ca. ab Betriebstag 115). Im Falle von Brunnen 1 konnten bis Betriebstag 194 Werte um 0,70 mg/L erreicht werden; im Falle von Brunnen 2 bis Betriebstag 204 ebenfalls Werte um 0,70 mg/L.
Bei einer erneuten Probenahme (Betriebstag 275) an Brunnen 2 war eine weitere Abnahme der Mangankonzentration bis auf 0,34 mg/L zu verzeichnen. Für Brunnen 1 lagen keine weiteren Ergebnisse vor. Es ist jedoch anzunehmen, dass auch hier die Einarbeitung fortgeschritten war und die Mangananwerte sich weiter reduziert hatten. Die Einarbeitung der Reaktionszonen beider Brunnen war somit noch nicht abgeschlossen und die Mangankanwerte lagen noch weit über dem Grenzwert von 0,05 mg/L. Auch bei Standort 4 ist eine vollständige Entmanganung erst nach stabiler Eisenfreiheit des Wassers zu erwarten.

Folgendes Fazit ist zu ziehen:

- die Einarbeitung der Enteisung beider Brunnen ist nicht optimal; in der Regel findet eine zufriedenstellende Enteisung bereits nach wenigen Aufbereitungszylken statt (sofern keine außergewöhnlichen Rohwasserbedingungen vorliegen, was bei Standort 4 nicht der Fall ist)
- beide Brunnen verfügen über eine zu lange Filterstrecke im Verhältnis zu den aufzubereitenden Wassermengen bzw. der Volumenstrom (Durchfluss) zur Infiltration des sauerstoffreichen Wassers ist zu gering
- im Falle von Brunnen 1 bildet sich über die Länge der Filterstrecke eine zu diffuse Reaktionszone im Aquifer aus, die die Wahrscheinlichkeit verringert, dass die Adsorptionsprozesse, die vor allem während der Wasserförderung ablau-
fen, und die Oxidationsprozesse, die während der Infiltrationsphasen erfolgen, stets in denselben Aquiferbereichen stattfinden.

- im Falle von Brunnen 2 kommt die Reaktionszone vermutlich nicht regelmäßig in Kontakt mit dem gesamten sauerstoffreichen Infiltrationswasservolumen und dem gesamten Förderwasservolumen, da das Infiltrationswasser gänzlich in der stark durchlässigen oberen Bodenschicht versickert und weitere Bodenschichten, in denen der Brunnen verfiltert ist und aus denen Wasser entnommen wird, nicht erreicht werden.

7.2.4.1 Brunnen 1

Abbildung 39: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit der Betriebstage
Abbildung 40: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit der Betriebstage

Abbildung 41: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen
Abbildung 42: Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 1 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen

7.2.4.2 Brunnen 2

Abbildung 43: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit der Betriebstage
Abbildung 44: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit der Betriebstage

Abbildung 45: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen
Abbildung 46: Eisen-Konzentrationen (Einfahrphase) im Förderwasser von Brunnen 2 an Standort 4 in Abhängigkeit des Fördervolumens für ausgewählte Zyklen

7.2.5 Standort 5

Durch die im Untergrund befindlichen Pyrit-Lagerstätten war damit zu rechnen, dass bei Infiltration von sauerstoffreichem Wasser in den Aquifer zunächst das Pyrit (FeS₂) oxidiert und zweiwertiges Eisen freigesetzt wird, welches in einem zweiten Schritt oxidiert werden muss. Die Reaktionen laufen wie folgt ab:

Das Eisendisulfid reagiert mit Sauerstoff als Oxidationsmittel in einer relativ langsamen autokatalytischen Initialreaktion, bei der Sulfat und Protonen entstehen.

\[\text{FeS}_2 + 3,5 \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 2\text{H}^+ \]

In Konkurrenz zur Eisendisulfid-Oxidation werden durch den Sauerstoff auch Fe²⁺-Ionen unter Verbrauch von Protonen oxidiert.

\[\text{Fe}^{2+} + 0,25 \text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + 0,5\text{H}_2\text{O} \]

Bei Betrachtung der Protonen-Gesamtbilanz aus beiden Reaktionen wird deutlich, dass bei fehlender Säure-Pufferkapazität eines Grundwassers dessen Acidität zunimmt. Mit dem entstandenen Fe³⁺ als Oxidationsmittel setzt sich die Pyrit-Oxidation im sauren Milieu fort. Dabei werden die Fe³⁺-Ionen durch Pyrit reduziert und weiteres Fe²⁺ entsteht.

\[\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+ \]

Diese Reaktionen konnten sehr gut während des Versuchsprogramms nachvollzogen werden.

Abbildung 47: Sulfat-Konzentrationen und pH (Vorversuch) im Förderwasser von Brunnen an Standort 5 in Abhängigkeit des Fördervolumens
Das eigentliche Versuchsprogramm bestand aus vier unterschiedlichen Betriebsprogrammen (BP). In den drei Programmen A, B, C wurde durch die Höhe der Infiltrationsmenge die Größe - das Volumen - der Reaktionszone variiert (A: 6,6 m³, B: 2,6 m³ und C: 4,0 m³). Wie aus Abbildung 48 und Abbildung 49 ersichtlich ist, konnten die Eisen- und Mangan-Konzentrationen von ca. 1 mg/L bzw. 0,15 mg/L während BP A zunächst leicht gesenkt werden. Eine starke Verkleinerung des Reaktionsraums (BP B) mit der Absicht, weniger Pyrit zu oxidieren und weniger Fe²⁺ zu mobilisieren, blieb ohne Erfolg. Auch die Einstellung auf eine mittelgroße Reaktionszone (BP C) blieb erfolglos; im weiteren Verlauf des Versuchs stiegen die Eisen- und Manganwerte sogar zum Teil stark an. Gegen Ende des Betriebsprogramms C wurden sogar die Werte zu Beginn der Aufbereitung überschritten. Eine herkömmliche In-situ-Aufbereitung war an diesem Standort nicht möglich. Das Pyrit-Lager im Bereich der Reaktionszone war offenbar zu groß, um durch eine Oxidation mit Sauerstoff in absehbarer Zeit umgesetzt zu werden.

In Betriebsprogramm D (gleiche Betriebsparameter wie BP C) wurde eine einmalige Zugabe von Wasserstoffsuperoxyd (35%ig) in einer Konzentration von ca. 3,5 g/L mit dem Infiltrationswasser in den Aquifer eingebracht. Hiermit sollte eine schnelle und vollständige Oxidation des in der Reaktionszone vorhandenen Eisendisulfids erreicht werden. Die Vorgehensweise war erfolgreich. Ab Zyklus 291 sanken sowohl die Eisen- als auch die Manganwerte innerhalb der nächsten 30 Zyklen unter die jeweiligen Grenzwerte und stabilisierten sich.

Fazit:
- eine herkömmliche In-situ-Aufbereitung ist an einem Pyrit-haltigen Standort nicht zu empfehlen
- eine mögliche biologische Aktivität Eisen-oxidierender Bakterien, z. B. der Art *Thiobacillus ferrooxidans*, die in saurem Milieu leben können, war während des Aufbereitungsversuch nicht zu beobachten
- durch die Einbringung eines starken Oxidationsmittels (H₂O₂, 35%ig, c₀ = 3,5g/L) mit dem Infiltrationswasser in den Untergrund konnte eine vollständige und nachhaltige Oxidation des Pyrits in der Reaktionszone erreicht werden und in der Folge eine In-situ-Enteisenung bzw. -Entmanganung ermöglicht werden
- vermutlich wurde im Zuge der Pyrit-Oxidation auch eine große Menge entstehendes Fe²⁺ zu Fe³⁺ umgesetzt, welches als sehr gutes Adsorbens für weiteres Fe²⁺ zur Verfügung steht.
Abbildung 48: Eisen-Konzentrationen (Einfahrphase) im Förderwasser des Brunnenstandort 5 in Abhängigkeit der Aufbereitungszyklen

Abbildung 49: Eisen- und Mangan-Konzentrationen (Einfahrphase) im Förderwasser des Brunnenstandort 5 in Abhängigkeit der Aufbereitungszyklen
8 Mikrobiologische Untersuchungsmethoden zur Lokalisierung, Identifizierung und Charakterisierung von Eisen- und Mangan-oxidierenden Mikroorganismen

8.1 Prinzipien der analytischen Methoden – molekularbiologische Methoden und Kultivierungsmethoden

8.1.1 Mikroskopie der Probe

8.1.1.1 Anfärben des Bodenmaterials zur Detektion von Eisen-oxidierenden Bakterien

Die Färbung des Bodenmaterials dient der Lokalisierung der Eisen-Oxidierer. Die Färbung wurde durch Zugabe von 15 Tropfen einer 4%igen Tetrakaliumhexacyanoferrat-trihydrat zu 25 ml 0,1% HCl durchgeführt. Die Probe wird auf einem Objektträger platziert und die Färbelösung langsam zugegeben. Wenn Fe(III)-Ionen vorhanden sind, bildet sich ein Fe(II)/Fe(III)-Hexacyanoferrat-Komplex, der als Berliner Blau bekannt ist.

8.1.1.2 Anfärben des Bodenmaterials zur Detektion von Mangan-oxidierenden Bakterien

Die Färbelösung für Mangan-oxidierende Bakterien enthält 0,25 g Benzidin in 25 ml 10%iger Essigsäure. Die Färbung der Bodenproben erfolgt auf einem Objektträger wie oben für die Eisenfärbung beschrieben. Manganoxide färben sich violett.

8.1.1.3 Gramfärbung

8.1.1.4 Phasenkontrastmikroskopie

8.1.2 Kultivierung von Eisen- und Mangan-Oxidierern

Obwohl weniger als 1% der Bakterien aus Umweltproben kultivierbar ist, wurde eine Methode getestet, um die Mikroorganismen zu kultivieren, die verantwortlich für die Eisen- und Manganoxidation sind.

8.1.2.1 Kultivierung von Eisen-oxidierenden Bakterien

Zur Isolierung von Eisen-Oxidierern wurden Bodenproben auf Medium ausplattiert, das 1 g L⁻¹ Pepton, 0,1 g L⁻¹ Hefeextrakt und 0,5 g L⁻¹ FeSO₄ (PYFe) enthält. Die Platten wurden zwei Wochen bei 22°C inkubiert.

8.1.2.2 Kultivierung von Mangan-oxidierenden Bakterien

8.1.3 Molekularbiologische Techniken

In natürlichen Habitaten überleben Mikroorganismen normalerweise in Mischpopulationen und die Interaktion zwischen verschiedenen Mikroorganismen in der Gemeinschaft beeinflusst deren Aktivität. Normalerweise können weniger als 1% der Mikroorganismen, die in Boden überleben, unter oligotrophen Bedingungen kultiviert werden. Somit sind kultivierungsunabhängige, molekularbiologische Methoden besser geeignet, um Informationen über mikrobielle Mischpopulationen in Umweltproben zu gewinnen; diese Methoden beruhen auf der direkten Isolierung und Analyse repräsentativer Moleküle. Die am häufigsten für dieser Zwecke benützten Makromoleküle sind die 16S rDNS und 16S rRNS. Die 16S rDNS besteht aus semi-konservierten Sequenzen, was bedeutet, dass verschiedene Bakteriengruppen leicht unterschiedliche 16S rDNS-Sequenzen haben. Die 16S rDNS ist ein optimales Ziel-target für diese Analysen, da es universell vorhanden, funktionell homolog und lang genug (1500 Basenpaare) ist, um auf den Mikroorganismus, von dem es isoliert wurde, rückzuschließen (Staley, 2002).

8.1.3.1 Analyse der mikrobiellen Gemeinschaft mittels 16S rDNS

Schritt 1: DNS-Isolierung

DNS der gesamten Population

Schritt 2: PCR amplifiziert das repräsentative Gen

Mischung aller 16S rRNS-Gene der Population

Schritt 3: Trennung und Organisation der Gene

Erstellung einer Klone library

Schritt 4: Analyse der Klone

Abbildung 50: Zusammenfassung der Schritte, die zur Isolierung, Amplifizierung und Organisation der 16S-Gene aus Umweltproben notwendig sind
Tabelle 23: Sequenz und Position der universellen Primer, die für die Amplifikation der 16S Gene eingesetzt werden.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Position (E. coli)</th>
<th>Sequenz 5’ – 3’</th>
<th>Zielgruppe</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>27F</td>
<td>7 – 27</td>
<td>AGAATTTGATCMTGGCTCAG</td>
<td>Bacteria</td>
<td>Medlin 1988</td>
</tr>
<tr>
<td>1492R</td>
<td>1510 – 1492</td>
<td>GGYTACCTTGTACGACTT</td>
<td>Bacteria</td>
<td>Medlin 1988</td>
</tr>
</tbody>
</table>

Klonierung in den Vektor

Transformation des Vektors in E. coli

Jeder Klon enthält einen Vektor
mit einer Kopie einer 16S-Sequenz

Abbildung 51: Erstellung einer Klone library aus der Mischung an 16S-Sequenzen

Diese Klone können analysiert werden, um Informationen über die mikrobielle Gemeinschaft zu bekommen. Die Klone werden durch eine Restriktionsanalyse, die amplifizierte rDNS Restriktionsanalyse (ARDRA), untersucht, um die Diversität der
Klone festzustellen. Dazu werden Enzyme benutzt, die an spezifischen Targetstellen die DNS schneiden. Die Restriktionsprodukte können durch Elektrophorese in charakteristische Bandenmuster getrennt werden. 16S-Gene, die unterschiedliche Sequenzen aufweisen, werden von den Enzymen an verschiedenen Stellen geschnitten, was in unterschiedlichen Fragmentgrößen resultiert. Die eingesetzten Enzyme waren Cfo I, Dde I, Msp I and Sau3A I.

Die Cluster-Analyse wurde mittels der “Unweighted Pair Group Method” über den arithmetischen Mittelwert (UPGMA) durchgeführt, um Gruppen verwandter Organismen zu erkennen. (Bionumerics Software von Applied Maths, Belgium).

8.1.3.2 Vergleich der mikrobiellen Population im Belüftungstank mit der Population in der Reaktionszone im Aquifer mittels Denaturing Gradient Gel Electrophoresis (DGGE)

Um zu prüfen, ob die mikrobielle Population im Belüftungstank das Brunnen-Sediment angeimpft haben kann, wurde eine Populationsanalyse sowohl des Sediments als auch des Bodenmaterials aus der Reaktionszone durchgeführt.

Abbildung 52: Denaturing Gradient Gel Electrophoresis von 16S rDNS Genen

Tabelle 24: Sequenz und Position der universelle Primer, die für die Amplifikation der 16S Gene eingesetzt werden.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Position (E. coli)</th>
<th>Sequenz 5' – 3'</th>
<th>Zielgruppe</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>27F-GC</td>
<td>7 – 27 + GC clamp</td>
<td>CGCCCGCCGCGCCCGCCCGCCCGGC CGTCCCGCCGCCGCCGCCGCC CC AGAGTTTGATC(A/C)TGG CTCAG</td>
<td>Bacteria</td>
<td>Murray 1996</td>
</tr>
<tr>
<td>517R</td>
<td>517</td>
<td>ATT ACC GCG GCT GCT GG</td>
<td>Bacteria</td>
<td>Murray 1996</td>
</tr>
</tbody>
</table>
9 Diskussion der mikrobiologischen Untersuchungsergebnisse

9.1 Eisen- und Mangan-oxidierende Mikroorganismen aus der Reaktionszone der In-situ-Reaktoren

9.1.1 Analyse der mikrobiellen Gemeinschaft mittels Mikroskopieren von Eisen- und Mangan-Oxidierern

Der Vergleich zwischen Bodenproben in und außerhalb der Reaktionszone zeigt, dass die Eisenoxidation in der Reaktionszone höher ist (vgl. Abbildung 53).

Abbildung 53: Vergleich des Bodenmaterials in (A) und außerhalb (B) der Reaktionszone. Berliner Blau Färbelösung.

Das nächste Ziel war das Auffinden der Eisen-Oxidierer. Eisen-oxidierende Bakterien setzen die sie umgebenden Eisenoxide um, was – bei Einsatz der beschriebenen Färbung – zu einer blauen Färbung führt. Diese Bakterien weisen charakteristische, gewundene/verdrillte Wachstumsformen auf (Abbildung 54) und wurden nur in den rostfarbenen Bodenproben gefunden, die aus Standort 1 entnommen wurden.

Die Gramfärbung der Eisen-oxidierenden Kulturen, die auf PYFe-Medium gewachsen sind, zeigen, dass es sich um gramnegative Stäbchen handelt (Abbildung 55).

Das Eisen-oxidierende Bakterium, das isoliert wurde, ist ein gramnegatives, bewegliches Stäbchen (Abbildung 56).
Mikroorganismen wie *Leptothrix* sind bewegliche, gramnegative Stäbchen, die sowohl zur Eisen- als auch zur Manganoxidierung fähig sind. *Leptothrix* kommt allgemein in aquatischen Habitaten vor.

9.1.2 Analyse der mikrobiellen Gemeinschaft mittels Kultivierung von Eisen- und Mangan-Oxidierern

Abbildung 57: rostfarbene mikrobielle Kultur aus der Reaktionszone, die auf das Wachstum von Eisen-oxidierenden Bakterien auf PYFe-Medium hinweist
Nach sechs Wochen waren Kolonien auf dem PYMn-Platten gewachsen (Abbildung 58).

Abbildung 58: (A): Kolonien des Isolates M9 bei Wachstum auf PYMn-Medium und auf PY-Medium; (B): Kolonien des isolates M10 auf PYMn-Medium und PY-Kontrollmedium; braune Kolonien auf PYMn-Medium deuten auf Mangan-Oxidation hin

Der Mangan-oxidierende Stamm Mn10 wurde von Filtermaterial des Hausfilters isoliert. Aus dem Rückspülschlamm des Wasserwerksfilters wurden die Mangan-Oxidierer RB1, 3, 4, 5, 6 und 7 isoliert. Von diesen Isolaten wurde die 16S rDNA amplifiziert und in die ARDRA-Analyse der Klone aus der Reaktionszone einbezogen.

Um diese Bakterien sicher zu identifizieren, muss DNS isoliert werden, das 16S-Gene amplifiziert, kloniert und sequenziert werden. Der Vergleich der 16S-Sequenz des unbekannte Bakterien mit den 16S-Sequenzen der NCBI-Datenbank wird dann Informationen liefern über die Identität dieser Mikroorganismen.

9.1.3 Analyse der mikrobiellen Gemeinschaft mittels 16S rDNS

Abbildung 59: UPGMA Cluster-Analyse von Klonen aus der Reaktionszone; 16S rDNS wurde restringiert mit Cfo I, Dde I, Msp I und Sau3A I

Von Cluster II wurde die 16S rDNA aus den Mangan-Oxidierer-Isolaten 3.1.RB1, 3.1.RB5 und 3.1.RB6 sowie die Reaktionszonen-Cluster 3.1.5 und 3.1.46 isoliert. Die Sequenzen wurden mit der ncbi-Datenbank verglichen (Tabelle 25).

Tabelle 25: Sequenzvergleich der 16S rDNS von Mangan-Oxidierern und Reaktionszonen-Cluster II mit der ncbi-Datenbank

<table>
<thead>
<tr>
<th>Isolat</th>
<th>Nächster Verwandter in der Datenbibliothek + Zugangsnummer</th>
<th>Basen *</th>
<th>Ähnlichkeit %</th>
<th>Phylogenetische Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1</td>
<td>Acidovorax sp. (AY093698)</td>
<td>590</td>
<td>98 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td></td>
<td>Acidovorax sp. (ASP012071)</td>
<td>590</td>
<td>97 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td>RB5</td>
<td>Acidovorax sp. (ASP012071)</td>
<td>510</td>
<td>98 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td></td>
<td>Acidovorax defluvii (ADY18616)</td>
<td>510</td>
<td>98 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td>RB6</td>
<td>Uncultured Comamonadaceae bacterium (AF523046)</td>
<td>704</td>
<td>93 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td></td>
<td>Aquaspirillum delicatun (AF078756)</td>
<td>764</td>
<td>88 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Variovorax sp. (AB003627)</td>
<td>761</td>
<td>95 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td></td>
<td>Variovorax sp. (AY571831)</td>
<td>761</td>
<td>95 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td>3.1.46</td>
<td>Herbaspirillum seropedicae (AF164065)</td>
<td>704</td>
<td>95 %</td>
<td>beta proteobacterium</td>
</tr>
<tr>
<td></td>
<td>Herbaspirillum chlorophenolicum (AB094401)</td>
<td>704</td>
<td>95 %</td>
<td>beta proteobacterium</td>
</tr>
</tbody>
</table>

* Basenzahl, die für den Abgleich benutzt wurde

Die Mangan-Oxidierer-Isolate und die Klone aus diesem Cluster gehören sämtlich in die Ordnung Burkholderiales der Beta Proteobacterien. RB1, RB5, RB6 und Klon 3.1.5 gehören alle in die Familie Comamonadaceae der Ordnung Burkholderiales. Es kommt durchaus oft vor, wenn man eine ncbi Datenbanksuche durchführt, dass die höchste Homologie mit einem nicht-kultivierten und damit nicht identifizierten Mikro-
organismus besteht, bei dem nur die Familie angegeben ist (vgl. Tabelle 25, Isolate RB6). RB6, mit Ähnlichkeit zu *Aquaspirillum*, gehört zur Familie Oxalobacteraceae aus der Ordnung Burkholderiales.

Zwei der Mangan-Oxidierer-Isolate aus Cluster II, RB 1 und RB 5, hatten eine hohe Ähnlichkeit zu *Acidovorax* sp. Um die Identifizierung zu bestätigen, wurde eine Modell-Restriktionsanalyse der 16S-Gene von 5 *Acidovorax* Stämmen mit den Enzymen *Cfo I*, *Dde I*, *Msp I* und *Sau3AI* durchgeführt und mit der Restriktionsanalyse von RB1 and RB5 verglichen. Außerdem wurde eine Modell-Restriktion an bekannten Eisen- und Mangan-Oxidierern durchgeführt, nämlich von *Leptothrix discophora* und *Sphaerotilus natans*, die beide ebenfalls zur Familie Comamonadaceae aus der Ordnung Burkholderiales gehören (Tabelle 26).

Tabelle 26: Schlüssel-Restriktionsfragmentgrößen aus der Modell-Restriktion der *Acidovorax*-Typ Stämme *Leptothrix discophora*, *Sphaerotilus natans* und aus der experimentellen Restriktions-Analyse der Klone RB1 and RB5

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Schlüssel-Restriktionsfragmentgröße (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cfo I</td>
</tr>
<tr>
<td>Acidovorax konjacii</td>
<td>528</td>
</tr>
<tr>
<td>type strain (AJ420325)</td>
<td></td>
</tr>
<tr>
<td>Acidovorax facilis</td>
<td>528</td>
</tr>
<tr>
<td>type strain (AJ420324)</td>
<td></td>
</tr>
<tr>
<td>Acidovorax delafieldii</td>
<td>528</td>
</tr>
<tr>
<td>type strain (AJ420323)</td>
<td></td>
</tr>
<tr>
<td>Acidovorax wohlfahrtii</td>
<td>528</td>
</tr>
<tr>
<td>(AJ400840)</td>
<td></td>
</tr>
<tr>
<td>Acidovorax avenae</td>
<td>528</td>
</tr>
<tr>
<td>(AB021421)</td>
<td></td>
</tr>
<tr>
<td>Denitrifying Fe-oxidising isolate (U51101)</td>
<td>528</td>
</tr>
<tr>
<td>RB1</td>
<td>530</td>
</tr>
<tr>
<td>RB5</td>
<td>530</td>
</tr>
<tr>
<td>Leptothrix discophora</td>
<td>526</td>
</tr>
<tr>
<td>(Z18533)</td>
<td></td>
</tr>
<tr>
<td>Sphaerotilus natans</td>
<td>524</td>
</tr>
<tr>
<td>(Z18534)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 27: Sequenzvergleich der 16S rDNS von Mangan-Oxidierern und Reaktionszonen-Cluster III mit der ncbi-Datenbank

<table>
<thead>
<tr>
<th>Isolat</th>
<th>Nächster Verwandter in der Datenbank</th>
<th>Basen *</th>
<th>Ähnlichkeit %</th>
<th>Phylogenetische Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB4</td>
<td>Uncultured alpha proteobacterium (AB074628)</td>
<td>663</td>
<td>86 %</td>
<td>alpha proteobacterium</td>
</tr>
<tr>
<td></td>
<td>* Devosia riboflavina (AY512822)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.19</td>
<td>* Bradyrhizobium sp. (AF041446)</td>
<td>732</td>
<td>92 %</td>
<td>alpha proteobacterium</td>
</tr>
<tr>
<td></td>
<td>* Bradyrhizobium sp. (AY141982)</td>
<td>700</td>
<td>92 %</td>
<td>alpha proteobacterium</td>
</tr>
<tr>
<td>3.1.38</td>
<td>Uncultured alpha proteobacterium (AB074628)</td>
<td>740</td>
<td>97 %</td>
<td>alpha proteobacterium</td>
</tr>
<tr>
<td></td>
<td>* Devosia riboflavina (AY512822)</td>
<td>763</td>
<td>96 %</td>
<td>alpha proteobacterium</td>
</tr>
</tbody>
</table>

* Anzahl der Basen, die für den Vergleich benutzt wurden.

rDNS von *Pedomicrobium manganicum* wurde mit der Restriktion der Isolate RB4 und Klone 3.1.38 verglichen.

Das Mangan-Oxidierer-Isolat RB4 hatte mit *Pedomicrobium manganicum* mehr Restriktionsfragmente gemeinsam als Klone 3.1.38 und scheint mit dem Mangan-Oxidierer näher verwandt zu sein.

Klon 3.1.19 hatte eine hohe Ähnlichkeit zu *Bradyrhizobium* sp. Diese Bakterien sind für ihre Fähigkeit bekannt, atmosphärischen Stickstoff zu Ammonium umzusetzen.

Aus Cluster IV wurde die 16S rDNS der Mangan-Oxidierer sequenziert. Die Sequenz wurde mit der ncbi der Datenbank verglichen (Tabelle 28).

Tabelle 28: Sequenzvergleich der 16S rDNS von Mangan-Oxidierern und Klonen aus der Reaktionszone von Cluster IV mit der ncbi Datenbank

<table>
<thead>
<tr>
<th>Isolat</th>
<th>Nächster Verwandter in der Datenbank</th>
<th>Basen</th>
<th>Ähnlichkeit %</th>
<th>Phylogenetische Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+ Zugangsnummer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn10</td>
<td>Nordella oligomobilis (AF370880)</td>
<td>613</td>
<td>100 %</td>
<td>alpha proteobacteria</td>
</tr>
<tr>
<td></td>
<td>Uncultured ferromanganous micronodule bacterium (AF292997)</td>
<td>613</td>
<td>94 %</td>
<td>alpha proteobacteria</td>
</tr>
<tr>
<td>RB3</td>
<td>Sinorhizobium sp. (AY505132)</td>
<td>503</td>
<td>99 %</td>
<td>alpha proteobacteria</td>
</tr>
<tr>
<td></td>
<td>Rhizobium sp.</td>
<td>503</td>
<td>98 %</td>
<td>alpha proteobacteria</td>
</tr>
</tbody>
</table>

* Anzahl der Basen, die für den Vergleich benutzt wurden.

9.2 Diskussion

Durch die komplementäre Anwendung von Mikroskopie, Kultivierung und Molekularbiologie konnte die Anwesenheit und Diversität der Mangan- und Eisen-oxidierenden Mikroorganismen in der Reaktionszone nachgewiesen werden.

Während der In-situ-Aufbereitung schwanken die Sauerstoffgehalte zwischen aerob und anaerob. Unter solch wechselnden Bedingungen kann Acidovorax das Eisen sowohl oxidieren als auch reduzieren. Acidovorax sp. ist aus manganreichen Sedimenten kultiviert worden, wobei jedoch die Fähigkeit zur Manganoxidation nicht bestimmt wurde (Stein et al., 2001). RB6 wurden isoliert von Rückspülschlamm von Wasserwerksfilter und identifiziert als einer Aquaspirillum sp. Aquaspirillum gehört zu einer Gruppe von Bakterien, die Eisen und Mangan oxidieren können (Bergey’s Classification of Bacteria).

Die Cluster III und IV enthalten eine Reihe verschiedener Alpha-Proteobakterien mit hoher Ähnlichkeit zu bekannten Eisen- und Manganbakterien. Mikroorganismen der Ordnung Rhizobiales enthalten auch Rhizobium sp. und Bradyrhizobium sp. Beide können Stickstoff fixieren, entweder im freilebenden Zustand oder als Teilnehmer der

9.3 Schlussfolgerungen

10 Diskussion der Aufbereitungsergebnisse unter Berücksichtigung der standortbezogenen mikrobiologischen Untersuchungsergebnisse

10.1 Versuch zur Verkürzung der Einarbeitungszeit von In-situ-Reaktoren

Der nächste Schritt bestand darin, zu prüfen, ob die Einarbeitungszeit der Reaktionszone verringert werden kann. Die folgenden Untersuchungen wurden an Versuchsbrunnen durchgeführt, die nur für diese Untersuchungen gebohrt worden waren.

10.1.1 Aktivierung der Reaktionszone durch direkte Animpfung

Auf dem Grundstück des Standorts 3 in Wadersloh wurden zunächst zwei Brunnen für die Anlagen 3-a und 3-b gebohrt (Abbildung 61).
Abbildung 61: (A) Bau des Versuchsbrunnens, der mit biologisch aktivem Material inokuliert wurde; (B) Bau des nicht-inokulierten Versuchsbrunnens, der als Kontrolle diente

An Standort 3-a wurde biologisch aktives Material (BAM) mit dem Kiesfiltermaterial, welches das Filterrohr umgibt, vermischts und im Zuge des Brunnenbaus in den Untergrund eingebracht. Es wurde angenommen, dass das BAM durch die natürlichen Grundwasser-Transportprozesse in die Reaktionszone eingetragen würde. Daher ruhte der Brunnen nach abgeschlossener Fertigstellung mehrere Tage.

Das BAM stammte aus einem Haushaltfilters und einer Reinkultur von Mangan-Oxidierern, die aus diesem Wasser gewonnen worden war. Die Reinkultur war eine Woche lang in Flüssignährmedium (PYMn Medium) und Sand gezüchtet worden, so dass sich ein Biofilm auf der Sandoberfläche bilden konnte. Die Konzentrationen von Eisen und Mangan wurden im Versuchs- und im Kontrollbrunnen verfolgt (Abbildung 62 und Abbildung 64).
Abbildung 62: (A) Verlauf der Mangankonzentrationen im direkt angeimpften Brunnen (Standort 3-a) und (B) im Kontrollbrunnen (Standort 3-b)
10.1.2 Aktivierung der Reaktionszone durch indirekte Animpfung

Eine Ablagerung feinen Sediments wurde am Boden des Belüftungstanks von Anlage 3-a beobachtet. (Abbildung 63).

10.1.2.1 Eisen- und Mangankonzentrationen

Abbildung 64: (A) Verlauf der Mangankonzentrationen im indirekt angeimpften Brunnen (Standort 3-c) und (B) im Kontrollbrunnen (Standort 3-b)
10.1.3 Diskussion

Es wurden zwei verschiedene Methoden erprobt, die Einarbeitungszeit zu verkürzen. Wenn der Brunnen durch Mischen mit BAM und Filtermaterial angeimpft wurde, konnte im Vergleich zum Kontrollbrunnen keine Verkürzung der Einarbeitungszeit beobachtet werden. Dafür können mehrere Gründe in Frage kommen:

1. Beim Vermischen des BAM mit dem Füllmaterial muss abgeschätzt werden, wie viel Material zur Füllung benötigt wird. Es ist nicht möglich, dies genau vorauszusagen, denn es hängt von der Struktur des Aquifers am Filter ab. Die Menge des Füllmaterials war überschätzt worden. Weil das BAM über die ganze Länge des Brunnen s verteilt war, lag es an der Brunnenwand nicht in konzentrierter Form vor.

2. Wenn der Brunnen gebohrt und verfüllt ist, wird als zuerst so lange Wasser aus dem Aquifer gepumpt, bis es nicht mehr trüb ist. Dabei wurde vermutlich BAM, das als flüssiges Inokulum eingebracht worden war, ausgetragen.

3. Die dritte Möglichkeit besteht darin, dass das BAM, von dem die Mangan-Oxidierer isoliert worden waren, nicht mehr aktiv war. Im Labor dauerte es 4-6 Wochen, bis Kulturen von Mangan-Oxidierern zu erkennen waren. Das deutet darauf hin, dass die Fähigkeit zur Manganoxidation von den Nährstoffbedingungen und vom Wachstumsstadium der Kultur abhängt.

Das zweite Verfahren zur Animpfung nutzte bereits etablierte Biofilme, die auf dem Sediment des Belüftungstanks entstanden waren, um die Reaktionszone auf natürliche Weise zu inokulieren, indem Wasser und Sediment während des Behandlungszyklus aus der Reaktionszone heraus und wieder zurückgepumpt wird. Bei gleich bleibenden sonstigen Umweltbedingungen erwies sich das Sediment aus dem Belüftungstank, das aus dem Brunnen mit der eingearbeiteten Reaktionszone stammte, als beste Quelle für die Animpfung des neuen Brunnen.

10.1.4 Schlussfolgerungen

Die Prozesse des Füllens und Pumpens bei der Etablierung eines Brunnen scheinen nicht günstig zu sein für die Animpfung mit BAM. Hingegen war es möglich, die Einarbeitungszeit abzukürzen, indem Sediment aus dem Belüftungstank zugegeben
wurde. Dies ist eine einfache und effektive Methode, die Einarbeitungszeit in einer Reaktionszone abzukürzen. Allerdings ist es möglich, dass dieses Verfahren nur für Brunnen mit ähnlichem Grundwasser funktioniert, die an ähnlichen Stellen positioniert sind.

10.2 Vergleich der mikrobiellen Population im Belüftungstank mit der Population in der Reaktionszone im Aquifer mittels Denaturing Gradient Gel Electrophoresis (DGGE)

Die Analyse weiterer Proben aus beiden Stellen erwies die gleichen Ähnlichkeiten. (Abbildung 66).

Abbildung 66: DGGE-Vergleich zwischen der Belüftungstank- und der Reaktionszonen-Population; die Spuren 1-4 sind analog zu denen im obigen Bild; die Spuren 5-12 stammen aus einer nested-PCR (16S-PCR gefolgt von DGGE-PCR)

10.2.1 Diskussion

Es gibt klare Ähnlichkeiten zwischen den bakteriellen Populationen im Belüftungstank und der Reaktionszone. Ob diese Organismen etwas mit der Mangan- und Eisenoxidation zu tun haben, lässt sich aus dieser Analyse nicht sagen, aber die Ähnlichkeiten zwischen den beiden Populationen stützen die Vermutung, dass die Organismen aus dem Belüftungstank den dritten Brunnen angeimpft haben.

10.2.2 Schlussfolgerungen

11 Hinweise zur Planung und zum Betrieb von In-situ-Reaktoren

Folgende Hinweise zur Planung bzw. zum Einsatz und zum Betrieb von In-situ-Reaktoren können auf der Grundlage der Aufbereitungsversuche, die in vorliegendem Forschungsvorhaben durchgeführt wurden, gegeben werden:

1. Die (dezentrale) In-situ-Technologie ist grundsätzlich ein geeignetes Verfahren zur effektiven Entfernung von Eisen und Mangan aus Grundwasser.

2. Der Einsatz der (dezentralen) In-situ-Technologie sollte bei der Aufgabenstellung einer Enteisenung und Entmanganung von Grundwasser immer in Betracht gezogen werden, da sie gegenüber anderen Verfahren Vorteile bietet:
 - Umweltverträglichkeit (kein Einsatz von Aufbereitungschemikalien (Herstellung, Transport, Entsorgung); kein Anfallen bzw. keine Entsorgung von Rückspülschlämmen; Bewirtschaftung und damit Notwendigkeit des Schutzes eines regionalen Grundwasservorkommens)
 - Kostengünstigkeit (geringer Flächenverbrauch, Verzicht auf lange Transportleitungen zu abgelegenen Verbrauchern)

3. Eine In-situ-Aufbereitung sollten detaillierte Rohwasseruntersuchungen und Aufschlussbohrungen zur Kenntnis der Bodenverhältnisse sowie Vorversuche vorausgehen, insbesondere, falls es sich um ein „schwierig“ aufzubereitendes (vgl. 5., 6. und 7.) Wasser handelt.

5. Schwierigkeiten bei der Enteisenung treten auf, wenn sich im Bereich der Reaktionszone Pyrit-Lagerstätten befinden, da der Sauerstoff in Sättigungskonzentrationen von ca. 10 mg/L als relativ schwaches Oxidationsmittel wirkt und eine Umsetzung des Pyrit-Lagers über Fe$^{2+}$ zu Fe$^{3+}$ in realistischer Zeit nicht möglich ist. Zudem wird bei der Oxidation von Pyrit sehr viel Säure produziert, was zu einem Absinken des pH-Werts führt und somit die Redox-Reaktionen der Enteisenung...
bzw. Entmanganung verlangsamt bzw. hemmt. Es konnte jedoch gezeigt werden, dass durch eine einmalige Zugabe von Wasserstoffsuperoxid (35%ig) in einer Konzentration von ca. 3,5 g/L mit dem Infiltrationswasser in den Aquifer eine schnelle und vollständige Oxidation des in der Reaktionszone vorhandenen Eisendisulfids erreicht werden kann und die Eisenwerte sich im Anschluss unter dem Grenzwert stabilisieren. Dennoch ist bei einem Pyrit-haltigen Aquifer von einer In-situ-Aufbereitung eher Abstand zu nehmen.

9. Zu Beginn der Aufbereitung sollte die Reaktionszone der In-situ-Reaktoren nicht überbeansprucht werden, d. h. die Anlage sollte nicht mit Ergiebigkeitskoeffizienten von weit über Kₑ = 2 gefahren werden. Mit abzeichnender Einarbeitung der Entmanganung kann der Ergiebigkeitskoeffizient langsam gesteigert werden, indem die Fördermenge erhöht wird. Eine Verkleinerung der Infiltrationsmenge bei gleich bleibender Fördermenge erhöht die Ergiebigkeit auch, wirkt sich aber erfahrungsgemäß kontraproduktiv aus, da die Reaktionszone verkleinert wird.

10. Generell gilt, dass erst nach der Stabilisierung der Eisen-Konzentration und dem Erreichen annähernder Eisenfreiheit eine Entmanganung einsetzen kann. Instabile Eisenkonzentrationen schienen im Versuch eine biologische Entmanganung zu „maskieren“. Das schnelle Absinken der Mangan-Konzentrationen nach dem Cal-
cit-Einsatz (Standort 2) ist als Beweis zu werten, dass Mangan-Oxidierer in ausreichender Menge vorhanden waren und in Wirklichkeit bereits eine biologische Entmanganung stattfand, die gebildeten Oxidationsprodukte (MnO₂) jedoch durch das vorhandene Fe²⁺ laufend reduziert wurden und in die Lösung zurückgingen. Eine abiotische Mangan-Oxidation war bei den vorliegenden pH-Werte von knapp über 6 auszuschließen.

11. Eine gut eingearbeitete Reaktionszone besitzt hinsichtlich der Enteisenung eine hohe Aufbereitungskapazität. In einem Dauerentnahme-Versuch konnte ca. die 95-fache Menge an Wasser gefördert werden wie infiltriert wurde ($K_e = 95$) bis der Grenzwert von 0,2 mg/L überschritten wurde. Dieser Wert ist jedoch standortabhängig.

12. Im Falle des Mangans besteht eine geringe Aufbereitungskapazität der Reaktionszone. Im Dauerentnahme-Versuch konnte lediglich die 3-fache Menge an Wasser gefördert werden wie infiltriert wurde ($K_e = 3$) bis der Grenzwert von 0,05 mg/L überschritten wurde. Dies entsprach in etwa der Betriebsprogrammstellung während der Einfahrphase mit $K_e = 2.5$. Diese Werte sind ebenfalls standortabhängig.

15. Eine zu lange Filterstrecke im Verhältnis zu den aufzubereitenden Wassermengen bzw. zum Volumenstrom (Durchfluss) zur Infiltration des sauerstoffreichen Wassers wirkt sich in hohem Maße nachteilig auf die In-situ-Aufbereitung aus, da sich über die Länge der Filterstrecke eine zu diffuse Reaktionszone im Aquifer ausbildet, die die Wahrscheinlichkeit verringert, dass die Adsorptionsprozesse, die vor allem während der Wasserförderung ablaufen, und die Oxidationsprozesse, die während der Infiltrationsphasen erfolgen, in denselben Aquiferbereichen stattfinden.

16. Eine Verfilterung des Brunnens in stark unterschiedlich durchlässigen Bereichen oder eine Unterbrechung der Filterstrecke, insbesondere bei unterschiedlichen Volumenströmen der Infiltration und der Förderung, verlängert die Einarbeitungszeit der Enteisenung und Entmanganung bzw. verhindert eine zufriedenstellende Aufbereitung.
12 Öffentlichkeitsarbeit

Ergebnisse dieses Forschungsvorhabens wurden in den folgenden Zeitschriften bzw. auf folgenden Veranstaltungen veröffentlicht. Weitere Veröffentlichungen sind nach Abschluss des Projektes geplant.

13 Fazit

Es lässt sich feststellen, dass die Ziele des Projekts erreicht werden konnten und dass aus der wissenschaftlichen Arbeit Ergebnisse entstanden sind, die sich in technische Lösungen umsetzen lassen.

14 Literaturhinweise

