

Abschlussbericht

Gewässerentwicklung erheblich veränderter Fließgewässersysteme im norddeutschen Tiefland – Entscheidungsunterstützung für die Umsetzungspraxis der WRRL anhand hochaufgelöster Daten des hydrochemischen und biologischen Gewässerzustands (EUfMAa)

DBU Aktenzeichen

32837/01

Verfasser*innen

Prof. Dr. Tillmann Buttschardt Dr. Friederike Gabel Sam Lucy Behle (M.Sc.) Paulina Schmidt (B.Sc.)

Institut für Landschaftsökologie (ILÖK), Angewandte Landschaftsökologie/Ökologische Planung der Westfälischen Wilhelms-Universität Münster, Heisenbergstr. 2, 48149 Münster

Prof. Dr. Christine Achten

Johanna Buss (M.Sc.)

Institut für Geologie und Paläontologie, Arbeitsgruppe Angewandte Geologie der Westfälischen Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster

Kooperationspartner

Carsten Bohn (Dipl.-Lök.)

Arbeitsgemeinschaft Wasser- und Bodenverbände Westfalen-Lippe (AG WuB); Seit 2018: Landesverband Wasser- und Bodenverbände Westfalen-Lippe e.V., Schorlemerstraße 15, 48143 Münster

Projektlaufzeit Februar 2018 – Dezember 2022

Danksagung

Die Verfasser*innen danken der DBU für die Förderung des Projektes. Patrick Günner und Michel Harre giltbesonderer Dank für die fachkundige Unterstützung bei der Elektrobefischung (s. Anhang 14). Saskia Rohrer besorgte das Probenlayout und führte die Erstaufnahmen durch. Jeannine Böhmichen (†) steuerte die Projektidee bei und Moritz Hillebrand brachte weitere fachliche Expertise aus der Praxis mit ein. Besonderer Dank gilt auch dem Projektbeirat und der technischen Unterstützung durch die Hilfskräfte und Mitarbeitenden des Labors der Angewandten Geologie und des Labors des Instituts für Landschaftsökologie der Universität Münster.

Münster, 28.01.2023

Inhalt

1 Einführung	und Motivation	1
1.1 Hinter	grund	1
1.2 Das Pr	ojekt	2
1.3 Die Pro	ojektziele	3
1.4 Die Fo	rschungsfragen	4
2 Projektverl	auf, Vorgehensweise und Methodik	6
2.1 Hydro	chemische Untersuchungen	7
•	Stichtagsprobenahme	
	Automatisierte Probensammler im oberen und unteren EZG	
2.1.3	Bestimmung des Abflusses	8
	Chemische Analytik	
	Analytik von δ15N und δ18O-lsotopen des Nitrats	
	Gewässerrandstreifen-Teststrecke	
2.2 Unters	suchung der Gewässerstruktur und Strahlwirkung	12
	Sohlstruktur12	
2.2.2	Uferrandstreifen	13
2.2.3	Beschattung13	
2.2.4	Strahlwirkung	13
2.3 Unters	suchung der biologischen Qualitätskomponenten	14
2.3.1	Elektrobefischung	14
2.3.2	Makrozoobenthos-Beprobung	15
2.3.3	Effekte derHydrochemie und der Habitatparameter auf die Fisch- und Makrozoobenthoszönosen	16
3 Projekterge	ebnisse	17
	chem Zustand befinden sich die hydrochemischen Qualitätskomponenten im Einzugsgebiet erschen Aa?	
3.1.1	Räumliche Konzentrationsschwankungen im EZG	17
3.1.2	Non-Target Analytik	20
3.1.3	Zeitliche Konzentrationsschwankungen an zwei Standorten im oberen und unteren EZG	2 3
3.1.4	Event-orientierte Beprobungen: Nach starkem Niederschlag oder längerer Trockenzeit	34
3.2 Unters	suchung zum Einfluss der Gewässerrandstreifen	35
3.3 In wel	chem Zustand befinden sich die biologischen Qualitätskomponenten im Einzugsgebiet?	37
3.3.1	Fische 37	
3.3.2	Makrozoobenthos	41
3.4 Bringt des EZ	ein zeitlich sowie räumlich höher aufgelöstes Stichprobennetz ein genaueres Bild des Zustar G? 43	ndes
3.5 Lasser	ı sich die ausgewiesenen (potentiellen) Strahlursprünge belegen und finden sich ggf. weitere	·?44

3.5.1 Ist eine ausreichende Strahlwirkung mit der aktuellen Planung gegeben?46
3.5.2 Haben kleinere Maßnahmen einen positiven Effekt auf die biologischen Qualitätskomponenten48
3.6 Welche Faktoren – chemisch oder strukturell – sind entscheidend für die Zusammensetzung der Fisch und Makrozoobenthosgemeinschaft im Einzugsgebiet?
4 Öffentlichkeitsarbeit/Veröffentlichungen/Vorträge52
4.1 Beiratstreffen52
4.2 Fachtagungen
4.3 Webauftritt/Entscheidungsunterstützungssystem
4.4 Bericht/Broschüre54
4.5 Publikationen54
5 Fazit und Ausblick55
6 Literatur58
7 Anhang 1

Abbildungsverzeichnis

Abbildung 1: Projektstruktur mit Arbeitspaketen und Einbindung der verschiedenen Akteure
Abbildung 2: Herstellung der Wochenmischproben und Schritte der Analyse
Abbildung 3: Beprobung des Gewässerrandstreifens1
Abbildung 4: Fotos zur Beprobung des GEwässerrandstreifens
Abbildung 5: Verteilung der Nitratkonzentration für die Stichtagsprobenahme1
Abbildung 6: Entwicklung der Arzneimittelkonzentration
Abbildung 7: Features im positiven ESI-Ionisationsmodus der Beprobung im Juli 20192.
Abbildung 8: Relative Änderung der Features (ESI positiv) zwischen den Probenahmestellen 16 (Münstersche Al vor Wöstebach) und 17 (Münstersche Aa nach Wöstebach)2.
Abbildung 9: Abfluss und Temperaturschwankungen im Jahresverlauf am Probensammler des oberen EZG 24
Abbildung 10: Temperaturschwankung im Tagesverlauf des 26.07.2019 am Probensammler unteres EZG. Di mittlereLufttemperatur betrug 29,8 °C
Abbildung 11: Jahreszeitlicher Verlauf der Nitratkonzentration [mg/L] und der resultierenden Nitratfrach [t/Woche] am Probesammler des oberen EZG20
Abbildung 12: Abhängigkeit der Nitratkonzentration vom Abfluss im oberen EZG (Nov. 2015 – Oct. 2020) 28
Abbildung 13: Ergebnisse der Analyse der Nitratisotope30
Abbildung 14: Abhängigkeit der Konzentration vom Abfluss für Carbamazepin, Metoprolol, Kalium und Chlorid i. denWochenmischproben
Abbildung 15: Jahreszeitlicher Verlauf der Carbamazepinkonzentration am Probesammler des oberen EZG 3.
Abbildung 16: Jahreszeitliche Schwankungen der Terbuthylazinkonzentration am Probesammler oberes EZG 3:
Abbildung 17: Skizze des Probenahme-Setups30
Abbildung 18: Befischungsergebnisse über die Projektlaufzeit40
Abbildung 19: Darstellung der MZB-Ergebnisse der Jahre 2019 und 2020 im EZG der Münsterschen Aa4
Abbildung 20: Darstellung der Befischungsergebnisse des Jahres 20194
Abbildung 21: Darstellung der Befischungsergebnisse des Jahres 20204
Abbildung 22: Darstellung der Makrozoobenthosergebnisse des Jahres 201940
Abbildung 23: Darstellung der errechneten Strahlwirkung im Bereich der Schlautbachmündung4.
Abbildung 24: Darstellung der gefunden Querbauwerke im Bereich der Schlautbachmündung4
Abbildung 25: Detrended Correspondance Analysos aller Habitate und chemischen Parameter bezogen auf di Fisch- und Makrozoobenthoszönosen der einzelnen Probestellen49
Abbildung 26: Detrended Correspondance Analyse aller Habitate und chemischen Parameter bezogen auf di Makrozoobenthoszönosen der einzelnen Probestellen50
Abbildung 27: Detrended Corespondance Analyse aller Habitate und chemischen Parameter bezogen auf di

Tabellenverzeichnis

Tabelle 1: Witterungsbedingungen und Wasserstände zu den Stichtagsprobenahmen	7
Tabelle 2: Anzahl der detektierten Features (Summe aus Detektionen im ESI+ und ESI- Modus). Mit * ma Probenahmestellen wurden nicht beprobt	
Tabelle 3: Bedingungen für die zusätzlichen Stichtagsproben am Probensammler des oberen EZG	34
Tabelle 4: Ausgewählte Ergebnisse der Stichproben am Probensammler des oberen EZG;	35
Tabelle 5: Befischungergebnisse der Jahre 2018 bis 2021	38
Tabelle 6: Makrozoobenthosergebnisse der Jahre 2019 bis 2022	41

Abkürzungsverzeichnis

AG WuB Arbeitsgemeinschaft Wasser- und Bodenverbände

AP Arbeitspaket

ESI Elektrospray-Ionisation

EZG Einzugsgebiet

fiBs Fischbasiertes Bewertungssystem

FiGt Fischgewässertyp

GOW Gesundheitlicher Orientierungswert

GÖZ Guter Ökologischer Zustand

GLÖZ guter landwirtschaftlicher und ökologischer Zustand

HMWB Heavily Modified Water Body

HÖP Höchstes Ökologisches Potenzial

HPLC-HRMS High Performance Liquid Chromatography – High Resolution Mass Spectrometry

IC Ionenchromatografie

ICP-OES Induktiv gekoppeltes Plasma – Optische Emissionsspektrometrie

Landesamt für Natur-, Umwelt- und Verbraucherschutz NRW

MZB Makrozoobenthos

OGewV Oberflächengewässerverordnung

WRRL Wasserrahmenrichtlinie

WUB Wasser- und Bodenverband

Kurzfassung des Berichts

Der vorliegende Abschlussbericht umfasst die Einführung und Motivation für das Projekt (DBU 32837/01) und eine Beschreibung des Projektverlaufes, der Vorgehensweise und der Methodik. Es folgen die Ergebnisse und Veröffentlichungen sowie ein Fazit mit weiterführenden Forschungsfragen und einem diesbezüglichen Ausblick.

Die EU-Wasserrahmenrichtlinie (WRRL; 2000/60/EG) und ihre nationale Umsetzung in Deutschland gibt als grundsätzliches Ziel für unsere Gewässer den "guten ökologischen Zustand" (GÖZ) sowie einen "guten chemischen Zustand" vor; diese sollten ursprünglich bis zum Jahr 2015 hergestellt sein. Die Vorgaben zur Umsetzung wurden auf der Ebene der Bundesländer konkretisiert. Nordrhein-Westfalen hat hierfür das Programm "Lebendige Gewässer" ins Leben gerufen und die "Richtlinie für die Entwicklung naturnaher Fließgewässer in Nordrhein-Westfalen" (Blaue Richtlinie) (MUNLV2010) erlassen. Konzeptionell wurde in NRW das "Strahlwirkungs- und Trittsteinkonzept" als F+E-Vorhaben entwickelt, welches nicht mehr 100% der Gewässerstrecke für Entwicklungsmaßnahmen vorsieht, sondern für Fließgewässer mit einem Einzugsgebiet von mind. 10 km² Abschnitte unterschiedlicher Priorität festlegt. In sogenannten "Umsetzungsfahrplänen" wird die Verwirklichung der Maßnahmen dokumentiert. Für etliche Fließgewässer in NRW wurden die Ziele bis 2015 nicht erreicht, der chemische Zustand ist flächendeckend nicht im guten Bereich (vgl. MKULNV 2015b).

Über die Jahre 2018 bis 2022 wurden verschiedenste Parameter über das komplette Einzugsgebiet der Münsterschen Aa erhoben. Es fanden Beprobungen zur Gewässerchemie, -struktur und der biologischen Qualitätskomponenten statt. Untersucht wurden wasserchemische Parameter die Spurenstoffe wie Arzneimittel und Agrarchemikalien in Stichtags- und Wochenmischproben, sowie die Auswirkung der Uferrandstreifen auf diese. Letztere wurden ebenfalls für die Gewässerstruktur untersucht. Hinzu kamen noch Kartierungen der Sohlstruktur, Beschattung und Querbauwerke des EZG. Zur Bewertung des biologischen Zustandes der Münsterschen Aa wurden Beprobungen des Makrozoobenthos, sowie Elektrobefischung über alle vier Projektjahre hinweg durchgeführt. Zur Bewertung der Relevanz von chemischen oder strukturellen Parametern auf die ökologischen Qualitätskomponenten des Gewässers wurde eine Detrended Component Analyse durchgeführt.

Die chemischen Untersuchungen weisen eine erhöhte Belastung des Gewässers durch Nitrat aus landwirtschaftlichen Quellen insbesondere nach Regenereignissen nach. Des Weiteren konnten maßgebliche Einflüsse durch Kläranlageneinleitungen in Form von Arzneimittel-Rückstände wie Carbamazepin aufgezeigt werden. Es konnte eine Vielzahl an Stoffen identifiziert werden. Kausalbeziehungen der hydrochemischen Belastungen zur Ausprägung der biotischen Qualitätskomponenten konnten nicht eindeutig belegt werden, da sich die schlechte Strukturgüte fast überall auf die biotischen Komponenten durchpauste. Hizu kamen zwei extreme Trockenjahre mit einem z.T. über mehrere Wochen komplett versiegenden Abfluss.

Strukturell weist das EZG ein mäßiges bis schlechtes Bild auf. Vereinzelt finden sich Abschnitte mit guten Sohlstrukturen oder ausreichendem Uferrandstreifen und ausreichender Beschattung. Querbauwerke sind ausschließlich im Oberlauf zu finden, mit einer hohen Anzahl im Schlautbach. Ebenso befinden sich die ökologischen Qualitätskomponenten Makrozoobenthos und Fische im meist mäßigen und unbefriedigenden Bereich. Punktuelle Verbesserungen durch Gewässeraufwertungen und kleine Maßnahmen konnten nachgewiesen werden. Des Weiteren wurden positive sowie negative Tendenzen durch ein zeitlich höher aufgelöstes Monitoring entdeckt.

Als ausschlaggebend für die Bewertung der ökologischen Qualitätskomponenten wurden hauptsächlich Habitatparameter der Sohlstruktur gefunden. Allerdings konnten auch Nitrat und Chlorid, sowie das Arzneimittel Carbamazepin als beeinflussend nachgewiesen werden. Durch die detaillierte Betrachtung des EZG konnten wichtige Schlüsse für erfolgreiche Implementierung der WRRL gezogen werden. Nichtsdestotrotz führten die gewonnen Erkenntnisse zu neuen Fragestellungen. Besonders vor dem Hintergrund des anhaltenden Klimawandels und des regelmäßigen Trockenfallens ganzer Gewässerabschnitte während der Projektjahre, ist weitere Forschung nötig.

1 Einführung und Motivation

1.1 Hintergrund

Die im Jahr 2000 durch die Europäische Union beschlossene Wasserrahmenrichtlinie (WRRL; 2000/60/EG) und ihre nationale Umsetzung in Deutschland gibt als grundsätzliches Ziel für Oberflächengewässer den "guten ökologischen Zustand" (GÖZ) sowie einen "guten chemischen Zustand" vor. Handelt es sich um erheblich veränderte Gewässerkörper (HMWB), so ist das "gute ökologische Potenzial" (GÖP) zu erreichen. Ursprünglich sollten diese Ziele bis zum Jahr 2015 erreicht sein.

Die Vorgaben zur Umsetzung der WRRL wurden auf der Ebene der Bundesländer konkretisiert. Nordrhein-Westfalen hat hierfür das Programm "Lebendige Gewässer" ins Leben gerufen und die "Richtlinie für die Entwicklung naturnaher Fließgewässer in Nordrhein-Westfalen" (Blaue Richtlinie) (MUNLV2010) erlassen. Konzeptionell wurde in NRW das "Strahlwirkungs- und Trittsteinkonzept" als welches entwickelt, nicht mehr 100% der Gewässerstrecke Entwicklungsmaßnahmen vorsieht, sondern für Fließgewässer mit einem Einzugsgebiet von mind. 10 km² Abschnitte unterschiedlicher Priorität festlegt. Es handelt sich hierbei um "Strahlursprünge", welche einen guten Zustand aufweisen und daher als Ausgangspunkt für die Wiederbesiedlung genutzt werden können und "Strahlwege", welche den Abschnitt zwischen zwei Strahlursprüngen darstellt. Mit "Trittsteinen", welche punktuellen Habitataufwertungen entsprechen, sollen auch degradierte Gewässerabschnitte überwunden werden können (LANUV NRW 2011). In sogenannten "Umsetzungsfahrplänen" wird die Verwirklichung dieser Maßnahmen dokumentiert. Für etliche Fließgewässer in NRW wurden die Ziele bis 2015 nicht erreicht, der chemische Zustand ist flächendeckend nicht im guten Bereich (MKULNV 2015b).

Das Modellgebiet für des Forschungsvorhabens ist das EZG der Münsterschen Aa (NRW), mit intensiv landwirtschaftlichen, urbanen sowie durch Abwasser geprägten Fließgewässerabschnitten. Durch den vorherrschenden Nutzungsanspruch der Flächenentwässerung, sind fast alle Fließgewässer im Münsterland als HMWB ausgewiesen. In der Planungspraxis verringert sich durch diese Einstufung der Umfang der an den Gewässern umzusetzenden Maßnahmen allerdings nur geringfügig. Dadurch wurden und werden auch an den HMWB-Gewässern umfassende Mittel zur naturnahen Entwicklung eingesetzt, die zu einer ökologischen Verbesserung führen sollen. Auch das GÖP ist an den zu betrachteten Gewässern das EZG der Münsterschen Aa nicht erreicht (MKULNV 2015a).

Für die Nichterreichung der Ziele können insbesondere Hindernisse bei der Maßnahmenumsetzung sowie ein Ausbleiben der gewünschten Erfolge im Hinblick auf das GÖP, trotz realisierter Gewässerentwicklungsmaßnahmen angesehen werden. Die Umsetzung scheitert in der Praxis häufig daran, dass vom Träger die erforderlichen 20% Eigenanteil nicht aufgebracht werden können oder Probleme beim Flächenerwerb bestehen. Die Erfahrungen aus der Bewirtschaftungsplanung und Umsetzung haben gezeigt, dass die Rahmenbedingungen für die Erreichung der Bewirtschaftungsziele entscheidend verbessert werden müssen (LANDTAG NRW 2016). In naher Zukunft werden Gewässerkonzepte für die morphologischen Gewässerentwicklungen neu aufzustellen sein.

An Gewässerabschnitten, wo die Nutzungsansprüche oder Flächenverfügbarkeit nicht das Ziel einer naturnahen Gewässerentwicklung beeinträchtigen, bleibt der ökologische Zustand oft weit unter dem der herangezogenen Referenz. Es wird vielfach angenommen, dass sich nach Verbesserung der morphologischen Strukturen, anschließend die gewässertypspezifische Biozönose auf natürliche Weise einstellt. Vom Zutreffen dieser Annahme ist jedoch aus unterschiedlichen Gründen nicht zwangsläufig auszugehen. Aktuelle Forschungsergebnisse haben gezeigt, dass neben dem Vorhandensein einer geeigneten Habitatausstattung, die Artzusammensetzung in renaturierten Flussabschnitten, sehr stark mit den biotischen Variablen, wie z.B. Verbreitung und Mobilität der Arten in angrenzenden Strecken zusammenhängt (STOLL ET AL. 2014). So ist es z.B. für die gewässertypspezifische Wiederbesiedlung renaturierter Abschnitte entscheidend, ob die Zielarten im

Gewässernetz vorkommen und in die neu gestalteten Abschnitte einwandern können. Auch die Populationsdichte im Gebiet oder artspezifische Eigenschaften sind für die Wiederbesiedlung ausschlaggebend (Stoll et al. 2013; Sundermann et al. 2011). Es sind Hinweise bekannt, dass Rückschlüsse auf Wiederbesiedlungsquellen anhand der Gewässermorphologie mit Unsicherheiten belastet sein können. Beispielsweise konnten Lorenz und Feld (2012) zeigen, dass Einzugsgebietseinflüsse den ökologischen Zustand anhand der Fische und des Makrozoobenthos (MZB) stärker beeinflussen, als lokale Habitatverbesserungen. Darüber hinaus ist die Gewässerstrukturbewertung methodisch in die Kritik geraten, was derzeit einen Konfliktpunkt in der Planungspraxis darstellt.

Im Bereich der hydrochemischen Bewertung können die stark dynamischen und örtlich hoch aufgelösten hydrochemischen Einflüsse in einem EZG mittels der limitierten Probenahmen im Rahmen der vorgeschriebenen Monitoringprogramme nicht detailliert abgebildet werden. Hieraus resultieren zusätzliche Unsicherheiten z.B. über lokale (Schad-)Stoffeinträge oder Stoßbelastungen bei Starkniederschlagsereignissen, die bei der Gewässerentwicklung Berücksichtigung finden müssen. Für die gezielte und erfolgreiche Gewässerentwicklung in einem EZG ist jedoch die Identifizierung und Bewertung der nicht selten kleinräumigen chemischen, faunistischen und morphologischen Situation Grundlage von abgeleiteten Maßnahmen, durch die andernfalls auch eine Verschlechterung des Zustandes nicht auszuschließen ist.

Auch in Bezug auf die biotischen Bewertungsparameter erscheinen die Monitoringsysteme der WRRL im aktuellen Zuschnitt als nicht ausreichend, um Erfolge oder anhaltende Defizite des ökologischen Zustands nach Gewässerentwicklungsmaßnahmen aufzeigen zu können. Des Weiteren fällt bei einer Betrachtung der Planungsgrundlagen der Münsterschen Aa und ihrer Nebenbäche auf, dass das Strahlwirkungs- und Trittsteinkonzept insofern Anwendung findet, dass Strahlursprünge (Wiederbesiedlungsquellen) auch ohne Evidenz einer naturnahen Biozönose bzw. der erforderlichen Strukturqualitäten in den entsprechenden Abschnitten ausgewiesen sind. Zur Implementierung dieses Konzeptes, ist es allerdings essenziell, Gewässerstrecken mit einem typspezifischen Bestand der Gewässerfauna zu identifizieren. Darüber hinaus können sich Strahlursprünge auch in den nicht berichtspflichtigen Gewässern befinden, die bisher nicht im Fokus der Erhebungen für die WRRL stehen. Zur Beschreibung der Strahlwirkungen ist eine Verknüpfung der faunistischen und hydro-Projektantrag chemischen Situation im Fließgewässersystem notwendig. Der Umstand, dass Fische und fast alle aquatischen Wirbellosen nicht planungsrelevant in NRW sind, macht deutlich, dass die vorhandenen Populationen nur eine unzureichende planerische Berücksichtigung finden und vorhandene Populationen ggf. systematisch unterschätzt werden.

Die Akteure der Wasserwirtschaft im Modellgebiet stehen vor der Aufgabe, die Ziele der WRRL über Fristverlängerungen bis spätestens 2027 zu erreichen. Dazu müssen die im Bewirtschaftungsplan allgemein formulierten Ziele auf Ebene einzelner Fließgewässerabschnitte, den sogenannten Oberflächenwasserkörpern (OFWK) konkretisiert und umgesetzt werden. Insbesondere an intensiv genutzten Gewässern müssen dafür Kompromisse und Ermessens-Entscheidungen auf unterster Planungsebene vorgenommen werden, trotz hoher Restriktionen und Konflikte. In diesem Zusammenhang fehlt es an belastbarem Wissen für eine Priorisierung der umzusetzenden Entwicklungsmaßnahmen (z.B. kleinere Maßnahmen als sogenannte Trittsteine implementieren) mit Hinblick auf differenzierte Belastungen und ökologische Wirksamkeit, um die zukünftigen Planungen sicherer und mit hoher Zielerreichungswahrscheinlichkeit umsetzen zu können.

1.2 Das Projekt

Das Forschungsprojekt setzt an den beschriebenen Problemen an, um anhand des EZG der Münsterschen Aa exemplarisch aufzuzeigen, wie die Entscheidungen der Akteure für die Gewässerentwicklung im Norddeutschen Tiefland unterstützt werden können. Besonders auch Gewässerentwicklungsmaßnahmen geringerer Dimension (sogenannte kleine Maßnahmen wie Einbau

von Totholz, Aufweitungen, Einbringen von Strukturelementen), welche als Trittsteine genutzt werden können, evaluiert das Projekt. Sie werden an intensiv genutzten Tieflandgewässern häufig umgesetzt, doch ihr Nutzen für die Biozönosen ist bislang noch umstritten. Außerdem zeigt die intensive Betrachtung des gesamten Gewässernetzes die bisher unbekannten Potentiale aufz und die Akteure werden stärker für die vorhandenen Organismen und Habitatqualitäten sensibilisieren. Ein hierdurch abgeleitetes passgenaueres Monitorings zur Darstellung der Trends in der Gewässerentwicklungspraxis verbessert die Datenlage für Entscheidungen im Planungsprozess nachhaltig.

Die Münstersche Aa ist ein Gewässer zweiter Ordnung und gehört mit ihren Nebengewässern zum Einzugsgebiet der Ems. Somit lässt sich das Modellgebiet in Beziehung zu einem größeren Fließgewässerkontext setzen. Potential für differenzierte und übertragbare wissenschaftliche Erkenntnisse liegt auch in dem heterogenen, für das Münsterland recht typischen Verlauf der Aa, mit einem intensiv landwirtschaftlich genutzten Oberlauf, einem Staubereich und einer stark urban geprägten Fließstrecke im Stadtgebiet, sowie einem durch Abwasser aus der Hauptkläranlage Münster geprägten Unterlauf. Das vergleichsweise kleine EZG von 172 km² bietet außerdem bereits eine ganze Reihe von Umsetzungsmaßnahmen mit alten oder jungen Entwicklungszeiträumen. Zudem bietet eine während der Projektlaufzeit vorgenommene Umgestaltung zwischen Station 33+280 und 34+130 (insg. 850 m) die Möglichkeit eines Vorher-Nachher-Vergleichs.

Die im Projekt erhobenen Daten über die Kombination von Fischbeständen, Vorkommen von Makrozoobenthos (MZB) und hydrochemischen Bedingungen von intensiv genutzten Tieflandbächen, leisten einen wesentlichen Beitrag zur angewandten Forschung. Das Vorkommen und die Ausbreitungsmöglichkeiten von Zielarten sind ein wesentlicher Faktor für den Erfolg von Renaturierungsmaßnahmen, wodurch das grundlegende Wissen über die Fisch- und Wirbellosenfauna im Gewässerverlauf eine entscheidende Bedeutung für den Planungsprozess bekommt. Mit den faunistischen Detailuntersuchungen im Rahmen dieses Projektes können Gewässerabschnitte mit einer möglichst naturnahen Zönose identifiziert werden, die als Wiederbesiedlungsquellen für umgestaltete Strecken dienen und ggf. auch den Zustand angrenzender nicht renaturierter Abschnitte verbessern können. Über den Nachweis der bestehenden Habitatqualitäten in den erheblich veränderten Gewässern können potentielle Entwicklungsräume besser quantifiziert werden, um das Strahlwirkungskonzept datenbasiert zu implementieren.

Die hydrochemischen Detailuntersuchung befassen sich mit den beeinflussenden Parameter, wie z. B. Abfluss oder Jahreszeit, welche bei der Probenahme zu berücksichtigen sind, um eine möglichst zutreffende Beschreibung der Gewässerqualität zu erhalten. Zu den hydrochemischen Gegebenheiten im Projektgebiet existiert ein Datensatz über einen längeren Messzeitraum, aus dem Informationen zur räumlichen und zeitlichen Auflösung des Messprogramms abgeleitet wurden.

Insgesamt zeigt das Projekt Evidenzen des naturschutzfachlichen Nutzens von Renaturierungsmaßnahmen und Alternativen zur bisherigen leitbildorientierten Gewässerentwicklung auf, um die Akteure in dieser Hinsicht zu qualifizieren, den ökologischen und chemischen Zustands der Gewässer zu verbessern. Die Ergebnisse des Forschungsprojektes sind daher zur Entscheidungsunterstützung in geeigneter Art und Weise öffentlich zugänglich aufbereitet.

1.3 Die Projektziele

Übergeordnet:

- Entwicklung eines Entscheidungsunterstützungssystems für die Umsetzungspraxis der WRRL auf Einzugsgebietsebene für erheblich veränderte Tieflandbäche und Darstellung in einer (ergänzbaren) Datenbank und einem Leitfaden, Implementierung bei lokalen und regionalen Akteuren durch einen Beirat
- Verbesserter Wissenstand über den chemischen und ökologischen Zustand der Gewässer im EZG im Hinblick auf Implementierung des Strahlwirkungskonzeptes

- Ableitung eines passgenaueren Monitorings zur Darstellung der Trends in der Gewässerentwicklungspraxis für erheblich veränderte Tieflandbäche
- Überprüfung, ob sich das reguläre Ergebnis der ökologischen und chemischen Bewertung der OFWK im EZG Münsterschen Aa gemäß WRRL bei genauerer Betrachtung bestätigen lässt
- Evaluation von Unterschieden in der ökologischen Situation des Gewässers hinsichtlich des spezifischen Einflusses von Landwirtschaft, Abwasser und urbanem Oberflächenabfluss
- Erarbeitung von praktischen Empfehlungen zur Umsetzung der WRRL an erheblich veränderten Tieflandgewässern aus den Erkenntnissen
- Evaluation eines notwendigen Stichprobensystems der chemischen und biologischen Qualitätskomponenten (Fische und MZB), um zielgerichteter Maßnahmen umsetzen zu können
- Operationalisierung der gewonnenen Erkenntnisse zur Unterstützung von Entscheidungen der Akteure im Planungsprozess
- Evaluation des Beitrags punktueller Verbesserungsmaßnahmen deren Kombination sowie eine entsprechend modifizierte Gewässerunterhaltung zur Zielerreichung der WRRL

Ökologische Qualitätskomponenten:

- Identifikation von Wiederbesiedlungsquellen und Trittsteinen im EZG Münstersche Aa zur Implementierung des Strahlwirkungssystems
- Evaluation des Potentials von Trittsteinen mit einer verbesserten strukturellen Qualität in-nerhalb eines erheblich veränderten Wasserkörpers (HMWB) für die naturnahe Entwicklung am Beispiel der Gewässer im EZG Münstersche Aa
- Prüfung der Beschränkung auf leitbildkonforme Renaturierungsmaßnahmen und Erhebung der Bedeutung von untypischen Ersatzlebensräumen für das Gewässer im Hinblick auf die Zielerreichung der WRRL und mögliche Konflikte mit der FFH-Richtlinie

Hydrochemische Qualitätskomponenten:

- Erhebung der Einflüsse von dynamischen Prozessen auf die reguläre Bewertung des hydrochemischen Gewässerzustands (mittels begrenzter Probenahmekampagnen)
- Evaluation der beeinflussenden Parameter, wie z. B. Abfluss, Ausbringungszeiten von Pestizi-den, etc. auf Ergebnisse der Gewässerbewertung mit Hinblick auf die Zeitpunkte und Lokati-onen der Probennahme sowie des Stichprobenumfangs
- Identifikation und Differenzierung möglicher hydrochemischer Fingerabdrücke für Einträge aus Landwirtschaft, Abwasser und urbanem Oberflächenabfluss
- Freilandversuch zur Evaluation von Verbesserung des Gewässerzustands durch Randstreifen

1.4 Die Forschungsfragen

- In welchem Zustand befinden sich die hydrochemischen Qualitätskomponenten im EZG der Münsterschen Aa?
- 2 In welchem Zustand befinden sich die ökologischen Qualitätskomponenten im EZG der Münsterschen Aa?
- Bringt ein zeitlich sowie räumlich höher aufgelöstes Stichprobennetz ein genaueres Bild des Zustandes des EZG?
- 4 Lassen sich ausgewiesene (potentielle) Strahlursprünge belegen und finden sich ggf. noch weitere?

- 5 Ist eine ausreichende Strahlwirkung mit der aktuellen Planung gegeben?
- 6 Haben kleinere Maßnahmen einen positiven Effekt auf die ökologischen Qualitätskomponenten?
- Welche Faktoren chemisch oder strukturell sind entscheidend für die Zusammensetzung der Fisch- und Makrozoobenthosgemeinschaft im EZG?

2 Projektverlauf, Vorgehensweise und Methodik

Das Projekt gliedert sich insgesamt in fünf Arbeitspakete, darunter ein Arbeitspaket (AP1) als übergeordneter Aufgabenbereich der Projektkoordination. Drei Arbeitspakete befassen sich mit den wissenschaftlichen Untersuchungen (AP 3 bis 5), die in enger Zusammenarbeit mit den Akteuren und dem Kooperationspartner AG WuB stattfinden. Die Akteursarbeit ist darum als eigenständiges Arbeitspaket in die Projektstruktur integriert (AP 2). Der Projektstrukturplan (Abbildung 1) zeigt die Beziehungen der verschiedenen Arbeitspakete im Projekt, sowie die Verknüpfung mit dem WRRL Monitoring und der Bewirtschaftungsplanung, die unabhängig vom Projekt fortlaufend stattfindet.

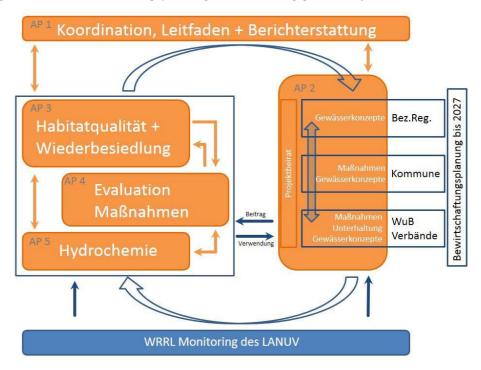


Abbildung 1: Projektstruktur mit Arbeitspaketen und Einbindung der verschiedenen Akteure.

Die wissenschaftlichen Untersuchungen im EZG der Münsterschen Aa erstreckten sich über die Jahre 2018 bis 2022, wobei Daten bzgl. der Gewässerchemie (AP5) und der ökologischen Qualitätskomponenten in Form von Fischen und Makrozoobenthos (AP3) erhoben wurden. Zur Evaluation der Maßnahmen des Arbeitspaketes 4 wurden ebenfalls die ökologischen Qualitätskomponenten herangezogen. Die Methodik der einzelnen Datenerhebungen wird in den folgenden Unterpunkten im Detail beschrieben.

Die hydrochemischen Probenahmen wurden im Jahr 2020 abgeschlossen, während die ungewöhnlichen hydrologischen Bedingungen mit extremen Trockenwetterlagen während der Projektjahre 2018, 2019 und 2020 v. a. die Probenahmen der Fische und des MZB stark beeinflussten und verlängerten. Diese Trockenperioden und das damit einhergehende Trockenfallen großer Teile der Gewässer führten im Verlauf des Projektes zu weiterführenden Fragestellungen bzgl. der Wasserrückhaltung und Gewässerstruktur. Vor diesem Hintergrund wurde das Projekt verlängert und im Winter 2021/22 eine Kartierung der Gewässerstruktur durchgeführt um weiterführende Daten zu erheben. Diese Daten wurden zuzüglich zu den in Abbildung 1 aufgeführten Arbeitspaketen erhoben.

Die Auswirkungen der Covid19-Pandemie führten ebenfalls zu einem Aufschub geplanter Beiratstreffen (AP2), welche im Jahr 2022 nachgeholt werden konnten.

2.1 Hydrochemische Untersuchungen

2.1.1 Stichtagsprobenahme

Im Projektverlauf wurden insgesamt fünf Stichtagsprobenahmen durchgeführt. Dazu wurden an 35 Probenahmestellen im Einzugsgebiet Proben entnommen (Anhang 3), Vor-Ort-Parameter gemessen und im Labor Anionen (Ionenchromatografie (IC)), Kationen (Induktiv gekoppeltes Plasma – optische Emissionspektrometrie (ICP-OES)) sowie organische Spurenstoffe(Target- und Non- Target- Analyse mittels High-Performance Flüssigchromatografie-Hochauflösende Massenspektrometrie (HPLC-HRMS)) bestimmt. Die Probenahmen fanden zwischen Mai 2018 und Juni 2020 in verschiedenen Jahreszeiten, bei unterschiedlichen Witterungsverhältnissen und bei verschiedenen Wasserständen statt (Tabelle 1): Witterungsbedingungen und Wasserstände zu den Stichtagsprobenahmen. Je nach Witterung konnten nicht alle 35 Stellen beprobt werden, da diese Stellen teilweise trockengefallen waren oder aufgrund von zu hohen Wasserständen nicht sicher erreichbar waren. Nähere Informationen zu den einzelnen Probenahmen sind in Tabelle 1 aufgelistet.

Tabelle 1: Witterungsbedingungen und Wasserstände zu den Stichtagsprobenahmen

Nr. Probenahmezeitraum		Anzahl Probestellen	0 0	Wasserstand des Pegels am Probensammler des oberen EZG [cm]		
1	25 29.05.2018	34 von 35	7 Tage vor Probenahme kein Niederschlag	ca. 10		
2	13 15.05.2019	35 von 35	Kein Niederschlag unmittelbar vorProbenahme	ca. 13		
3	12 14.07.2019	34 von 35	Gewitter mit Platzregen am 11.07. (20 mm)	15 - 30		
4	16. & 17.12 2019	33 von 35	Regelmäßige Niederschläge (2 - 8 mm/Tag)	80 - 100		
5	15. & 16.06.2020	33 von 35	Starker Niederschlag am 14.06. (50 mm)	Ca. 50		

2.1.2 Automatisierte Probensammler im oberen und unteren EZG

Für ein zeitlich hoch aufgelöstes Monitoring wurden an zwei Stellen im EZG automatisierte Probensammler installiert. Ein Probensammler (Edmund Bühler PP-MIC 12/T, Tübingen) befindet sich am Ende des oberen Einzugsgebiets (51,953682° N; 7,563128° O (WGS84)), etwa 3,5 Flusskilometer vom Zulauf der Münsterschen Aa in den Aasee. Dieser Probensammler ist seit 2015 in Betrieb. Ein weiterer Probensammler (WaterSam WS314, Bahlingen) wurde im Juli 2018am Ende des EZG, etwa 1,4 Flusskilometer vor der Mündung, aufgestellt (52,076027° N, 7,606913° O(WGS84)) und ist seit Oktober 2018 in Betrieb. Durch die Probensammler werden stündlich etwa15 ml Probe entnommen und in 4 x 1 L Flaschen pro Kalenderwoche gesammelt. Die Proben wurdenin den Probensammlern bei ca. 5 °C gekühlt, im Labor zu Wochenmischproben zusammengeführt und bis zur Analyse bei 4 °C gekühlt (Anionen, Kationen) bzw. tiefgefroren bei -18° C (Spurenstoff- Analytik) gelagert (vgl. Abbildung 2).

Abbildung 2: Herstellung der Wochenmischproben und Schritte der Analyse

2.1.3 Bestimmung des Abflusses

Am Standort des Sammlers für das obere EZG befindet sich eine Abflussmessstelle des Landesamtesfür Natur-, Umwelt- und Verbraucherschutz des Landes NRW (LANUV NRW). Die dort gemessenen halbstündlichen Abflusswerte wurden der Universität Münster für die hier dargestellten Auswertungen zur Verfügung gestellt.

Abflussmessungen im Mündungsbereich werden vom LANUV NRW nicht durchgeführt und können aufgrund der Uferbeschaffenheit und des Gewässerverlaufs nicht verlässlich durch Flügelmessungenin der Nähe des Sammlers bestimmt werden. Um dennoch qualifizierte Aussagen zu Stofffrachten treffen zu können, wurde in einem ersten Ansatz der Abfluss der Münsterschen Aa über die Differenz der Abflüsse der Ems zwischen dem Pegel Fuestrup (oberhalb Mündung der Münsterschen Aa, Betreiber: Wasserstraßen- und Schifffahrtsamt Meppen) und dem Pegel Nordwalder Straße inGreven (unterhalb Mündung der Münstersche Aa, Betreiber: LANUV NRW) abgeschätzt. Dieser Ansatz wurde allerdings aufgrund von unplausiblen Berechnungsergebnissen und der großen Fehleranfälligkeit wieder verworfen. Zwischen dem Pegel Fuestrup und der Mündung der Münsterschen Aa fließen noch zahlreiche kleiner Bäche und Abläufe in die Ems, die das Ergebnis verfälschen können.

Auch der Ansatz, die Abflüsse mittel der Fläche des EZG (84 km² Oberes EZG und 172 km² Gesamt-EZG) zu bilanzieren wurde zunächst verworfen, da der Aa geklärtes Abwasser aus der Hauptkläranlage Münster im unteren EZG und der Kläranlage Havixbeck im oberen EZG zufließt. Diese Zuflüsse machen bei Trockenwetterverhältnissen einen hohen Anteil aus. Der Abfluss am Sammler im unteren EZG kann somit nicht ausschließlich über die Skalierung der Flächen im EZG erfolgen (172 km² / 84 km² = Faktor 2,05).

In einem dritten Ansatz wurde an einem Wehr 700 m oberhalb der Probenahmestelle die Leistung eines Wasserkraftwerks verwendet, um den Abfluss zu berechnen. So kann für den Trockenwetterabfluss, der zu einem Großteil des Jahres vorliegt, ein verlässlicher Abflusswert berechnet werden. Für einen Abfluss >0,9 m³/s muss weiterhin eine Abschätzung erfolgen, da dies der maximalen Schluckleistung der Turbine entspricht. Die Berechnung erfolgt über die Turbinengleichung:

```
\begin{array}{ll} P = \rho^* \ V \ ^* g \ ^* h \ ^* \eta \\ \\ P & = \text{Leistung in W} \\ \rho & = \text{Dichte des Wassers (1.000 kg/m}^3) \\ V & = \text{Durchfluss in m}^3 / s \\ g & = \text{Erdbeschleunigung (9,81 m/s}^2) h \\ \eta & = \text{Wirkungsgrad (0,85)} \end{array} = \text{Fallh\"{o}he (3,7 m)}
```

Die Leistung der Turbine wurde über mehrere Monate bei verschiedenen Wasserständen aufgezeichnet. Daraus wurde anschließend der Durchfluss berechnet, der bei Vollleistung der Turbine von 22 kW einen Wert von 900 L/s beträgt. Der Wasserstand am Probensammler im unteren Einzugsgebiet wurde durch eine neu für das Projekt erworbene Drucksonde (OTT Hydromet) im Gewässer aufgezeichnet. Die Korrelation der am Probensammler gemessenen Wasserstände mit den Durchflussdaten der Turbine ergeben einen Wasserstand von etwa 127 cm bei einem Durchfluss von 0,9 m³/s. Wasserstände, die darüber liegen,können nicht klar einem Abfluss zugeordnet werden. Der mittlere Wasserstand lag in 79 von 103 beprobten Wochen unter dem kritischen Wasserstand von 127 cm, sodass für etwa 77% des beprobten Zeitraums eine Aussage zum Wasserstand über die Turbine am Wehr getroffen werden konnte.

Die Berechnung des Abflusses für die Zeiträume, in denen der Wasserstand über 127 cm lag, wurde nicht mit der oben genannten Formel vorgenommen. Mit steigendem Wasserstand ändert sich die Querschnittsfläche des Gewässers. Da die Querschnittsfläche des Gewässers annährend trapezförmig ist, steigen Wasserstand und Querschnittsfläche nicht proportional zueinander an.

Somit ist auch der Anstieg des Abflusses bei höheren Wasserständen steiler und kann nicht mit der Turbinengleichung, die für niedrige Wasserstände verwendet wurde, fortgeführt werden.

Da hohe Wasserstände an der Münsterschen Aa nach Niederschlägen auftreten und diese Niederschläge vor allem aus den Flächen im EZG stammen, wurde für die Berechnung des Abflusses bei Hochwasserverhältnissen der Flächenfaktor 2,05 herangezogen und mit dem gemessenen Abflusswert aus dem oberen EZG multipliziert. Da bei hohen Wasserständen der Anteil des Wassers aus der Hauptkläranlage abnimmt, erscheint dieser Ansatz in einem Hochwasserszenario plausibler.

Da die Werte für erhöhte Wasserstände wahrscheinlich dennoch eine hohe Fehleranfälligkeit aufweisen, sind diese in den im Folgenden verwendeten Grafiken farblich markiert. Daraus resultierende Frachtabschätzungen werden in Bereichen angegeben, die sich zwischen der Berechnung durch die Turbinengleichung und der Abschätzung mittels der Fläche des EZG ergeben.

2.1.4 Chemische Analytik

Die Vor-Ort Parameter pH-Wert (Sentix 940), elektrische Leitfähigkeit (TetraCon 925), Sauerstoffgehalt (FDO925) und Redoxpotential (SenTix ORP) wurden während der Stichtagsprobenahmen mit dem WTW Multi 3430 Set gemessen. Der Gehalt an Hydrogencarbonat wurde durch Titration mit 0,1 M HCl bis zu einem pH-Wert von 4,3 bestimmt. Dies wurde innerhalb von 24 Stunden nach der Probenahme durchgeführt.

Anionen (Fluorid (F¹), Chlorid (Cl¹), Bromid (Br¹), Nitrit (NO ¹), Nitrat (NO ¹), Phosphat (PO ³¹) und Sulfat (SO ²¹)) wurden gemäß DIN EN ISO 10304-1 mit einer Metrosepp A Supp 4 Säule mittels IC (Metrohm AG, Schweiz) nach Filtration (0,45 μm) bestimmt. Für die Messung der Kationen (Natrium, Kalium, Calcium, Magnesium, Eisen (Fe²+), Mangan (Mn²+), Strontium, Silizium und Aluminium) mittels ICP- OES (Spectro Analytical Instruments) gemäß DIN EN ISO 11885 wurden die Proben mit Salpetersäure(69%) angesäuert und innerhalb von 48 Stunden gemessen.

Die verwendete Methode zur Bestimmung der organischen Spurenstoffe wurde im Vergleich zum Projektantrag optimiert. Zu etwa 3 mL Probe werden 0,1% Ameisensäure zugegeben und anschließend zentrifugiert (4000g; 10 min; 15 °C), bevor die Proben mit HPLC-HRMS (Prominence UFLCXR, Shimadzu; Maxis 3G UHR-QTOF-MS, Bruker) mittels Elektrospray Ionisation (ESI) im positiven und negativen Ionisationsmodus analysiert werden. Die Analyse erfolgt durch eine Direktinjektion der Probe (490 μ L + 10 μ L interner Standard bestehend aus Sulfadimethoxin d6, Diuron d6, Hydrochlorothiazid 13C, d2 und Benzotriazol d4). Der Kalibrationsstandard enthält folgende Substanzen: 10,11-Dihydro-10,11-Dihydroxacarbamazepin (seit Sep 2020), 10-Hydroxycarbazepin (seit Sep 2020) Atrazin, Atrazin-Desethyl, Bentazon, Benzotriazol, Bezafibrat, Bromacil, Bromoxynil, Candesartan (seit Sep 2020), Carbamazepin, Chloridazon, Chlorotoluron, Dicamba, Dichlorprop, Dichlorbenzamid, Diclofenac,

Dimethoat, Diuron, Foramsulfuron, Hydrochlorothiazid, Ibuprofen, Imidacloprid, Irbesartan (seit Sep 2020), Isoproturon, Koffein, MCPA, Mecoprop-P, Metazachlor, Metoprolol, Olmesartan (seit Sep 2020), Pethoxamid, Phenazon, Phenmedipham, Propyphenazon, Sulfadiazin, Sulfadimethoxin, Sulfamethoxazol, Tebuconazol, Telmisartan (seit Sep 2020), Tembotrione, Terbutylazin, Valsartan (seit Sep 2020) und Valsartansäure (seit Sep 2020). Qualitativ können außerdem ca. 150 weitere Substanzen durch Standards bestimmt werden (Anhang 6).

Die Probensammler im oberen und unteren EZG liefern kontinuierlich Wochenmischproben, die in mit o.g. Methodik untersucht wurden. Ergebnisse der Messungen liegen für fünf Jahre (Sammler oberes EZG) bzw. zwei hydrologische Jahre (Sammler unteres EZG) vor.

Für die Auswertung der Messungen mittels Non-Target Analytik (HPLC- HRMS) wurden die Messdateien mit dem Programm MZMine 2 (Pluskal et al., 2010) ausgewertet, welches aus der Retentionszeit, der Intensität und dem jeweiligen Masse-zu- Ladungsverhältnis von detektieren Substanzen sogenannte Features bildet. Diese Features wurden anschließend nach verschiedenen Kriterien gefiltert [1]. Unter Zuhilfenahme der Fragmentspektren (MS/MS) kann schließlich ein Abgleich mit Datenbanken erfolgen, um eine Identifizierung bis Level 2 (wahrscheinliche Identifizierung) (nach Schymanski et al, 2015) zu erreichen. Mit der Aufteilung in Features lassen sich die verschiedenen Probenahmestellen mithilfe der Gesamtheit der ermittelten Features vergleichen, sodass deutlich mehr Informationen als nur das Auftreten bestimmter Stoffe gewonnen werden können.

2.1.5 Analytik von δ15N und δ18O-Isotopen des Nitrats

Zur genaueren Bestimmung des Ursprungs der Nitrateinträge im Einzugsgebiet wurden eigenfinanziert Isotopenuntersuchungen in Auftrag gegeben. Dazu wurden drei Probentypen analysiert. Proben des Kläranlagenablaufs der Kläranlage Havixbeck, repräsentativ für den Eintrag durch häusliches Abwasser, wurden im September 2020 und Februar 2021 bei Trockenwetter und im Januar 2021 bei Bedingungen mit erhöhtem Niederschlag genommen. Außerdem wurde im Labor, repräsentativ für Abwasser tierischen Ursprungs, 0,1 m³ Ackerboden mit 1 L Schweinegülle gemischt und für 14 Tage bei >20°C inkubiert. Anschließend wurde das Gemisch mit etwa 2 L destilliertem Wasser gespült, um das gebildete Nitrat zu extrahieren. Als dritter Probentyp wurden Oberflächenwasserproben am Sammler Roxel entnommen. Diese Proben wurden zum gleichen Zeitpunkt, wie die der Kläranlage entnommen. Alle Proben wurden mit 0,2 μ m Spitzenvorsatzfiltern filtriert und bis zur Analyse tiefgekühlt. Die Analysen wurden nach Stock et al. (2021) an der TU Dresden durchgeführt. Dabei wurde das Nitrat zu N2O umgesetzt und die Isotopen des umgesetzten δ 15N und δ 18O analysiert.

2.1.6 Gewässerrandstreifen-Teststrecke

Zur Beprobung der Gewässerrandsteifen-Teststrecke wurden nach einigen Testläufen je 15 zylindrische Glasgefäße an den Böschungen zwischen einer Ackerfläche <u>mit</u> Gewässerrandstreifen (etwa 5 Meter) und dem Meckelbach sowie gegenüber einer Fläche <u>ohne</u> Randstreifen und dem Meckelbach eingebracht. Beide Flächen befinden sich gegenüberliegend am gleichen Gewässerabschnitt, sodass vergleichbare Versuchsbedingungen gegeben sind (Abbildung 3).

Glasgefäße wurden im Abstand von etwa 1 m angeordnet und bündig mit dem Boden eingebracht. So kann oberflächlich abfließendes Niederschlagswasser gesammelt werden. Die Gefäße wurden außerdem durch Edelstahlbleche abgedeckt, um die direkte Sammlung von Niederschlag zu verhindern und dennoch Oberflächenabfluss zu sammeln (Abbildung 4).

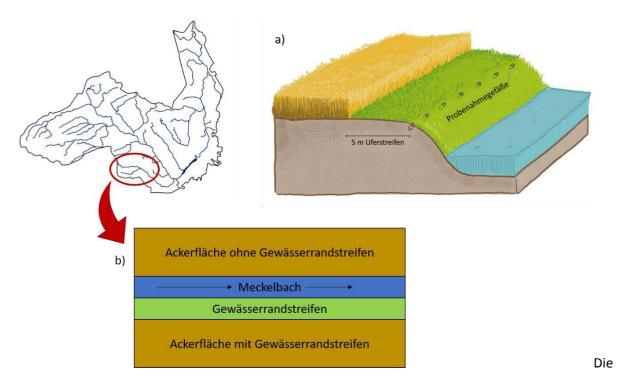


Abbildung 3: Beprobung des Gewässerrandstreifens a) grobe Lage und schematische Darstellung (Aufsicht) b) schematische Anordnung der Probegefäße im Profilschnitt

Die Gefäße wurden vor dem Einsetzen in den Boden gespült sowie ausgeheizt und wurden jeweils kurz vor einem gemeldeten Niederschlagsereignis eingesetzt. Nach Ende des Niederschlagsereignisses wurden die Gefäße möglichst zeitnah wieder entnommen und die Wasserproben zu einer Mischprobe zusammengeführt. Ein Verbleib der Gefäße an Ort und Stelle wurde verworfen, da sie für Insekten und Nager schnell zu einer Falle werden können.

Die gewonnenen Mischproben von meist wenigen Millilitern wurden im Labor untersucht. Wenn nicht ausreichend Probenvolumen für die Durchführung aller Analysen (Anionen, Kationen, organische Spurenstoffe) gewonnen werden konnte, wurden die Analysen gemäß folgender Reihenfolge durchgeführt.

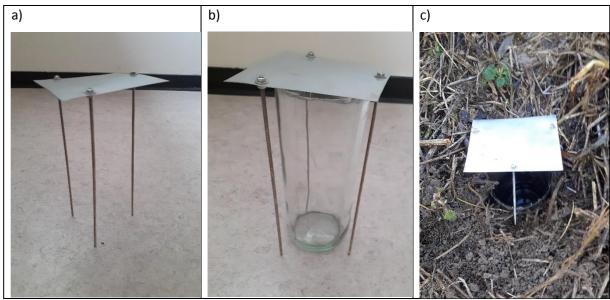


Abbildung 4: a) Abdeckung zur Verhinderung der Sammlung von Niederschlag b) Glasgefäß mit Abdeckung c) fertiger Versuchsaufbau mit Abdeckung, eingelassen in den Boden am Probenahmestandort

Anionenbestimmung mittels IC

Für diese Analyse werden nur 1 - 2 ml Probe benötigt. Außerdem wird die Konzentration von Nitrat und Phosphat über dieses Verfahren bestimmt. Sowohl Nitrat als auch Phosphat tragen stark zur Eutrophierung von Gewässern bei und werden in der Landwirtschaft zur Düngung eingesetzt. Daher erscheint die Anionenanalyse ein wichtiger Baustein zur Beurteilung der Gewässerrandstreifen zu sein.

- 2 Bestimmung der enthaltenen organischen Spurenstoffe mittels HPLC-HRMS Für die Analytik der organischen Spurenstoffe werden etwa 3 4 ml Probe benötigt. Durch diese Analytik lassen sich der Eintrag von Pestiziden in das Gewässer quantifizieren und die Auswirkung der Gewässerrandstreifen im Hinblick auf den Eintrag dieser Stoffe bewerten.
- 3 Kationenbestimmung mittels ICP-OES
 Für die Kationenanalytik werden etwa 10 ml Probe benötigt. Da dieses Volumen bei der
 Beprobung nicht immer erhalten werden konnte, wurde diesem Analyseschritt die geringste
 Priorität zugeordnet.

2.2 Untersuchung der Gewässerstruktur und Strahlwirkung

Da unsere Ergebnisse aus den ersten Jahren neben der Gewässerchemie einen deutlichen Einfluss der Gewässerstruktur auf die biologischen Qualitätskomponenten gezeigt haben, wurde diese im Winter 2021/2022 erhoben. Als relevante Komponenten wurden die Sohlstruktur, der Uferrandstreifen und die Beschattung festgelegt, welche schlussendlich ebenfalls zur Bestimmung der Strahlwirkung genutzt wurden. Exemplarisch wurden die Münstersche Aa von ihrer Quelle bis zur Stationierung 6.4 bewertet, sowie der komplette Schlautbach. Letzterer dient vor allem dazu Aussagen über das Strahlwirkungspotential von Nebenflüssen zu ziehen.

2.2.1 Sohlstruktur

Als Grundlage für die Sohlstruktur wurde die Gewässerstrukturgütekartieranleitung des LANUV verwendet. Aufgrund positiver Ergebnisse auf der Beprobung kleinerer Maßnahmen im Jahr 2020 und limitierter Zeit- und Personalressourcen wurde sich auf die Sohlstruktur konzentriert und die Anleitung dementsprechend abgeändert. Die Sohle eines Gewässers bietet die Möglichkeit von kleineren Eingriffen und Aufwertungen ohne große Umstrukturierungen. In einem Einzugsgebiet wie dem der Münsterschen Aa, wo viele Drücke durch Anrainer wie Landwirte aber auch dem umgebenden Stadtgebiet herrschen, bietet die Sohle die beste Möglichkeit zur Aufwertung des Gewässers.

Die Bewertungskriterien wurden an die vorherrschenden Fischgewässertypen (FiGt_05, FiGt_06 und FiGt_25) angepasst. Aufgenommen wurden zum einen Angaben zum Gewässer (Bsp. Gewässertyp, Linienführung und Wasserstand) die Gewässerstruktur. Diese war unterteilt in Sohlsubstrat (mineralische und organische Substrate), Substratdiversität, Sohlverbau und besondere Strukturen (Bsp. Pool, Schnelle und Kolke). Die Substrate wurden in den Kategorien dominierend, regelmäßig wiederkehrend und vereinzelt aufgenommen. Ein zu bewertender Abschnitt bestand immer aus 100 m und orientierte sich an der Stationierung des LANUV, welche im ELWAS nachgeschaut wurde. Zuzüglich wurden die Querbauwerke innerhalb eines Abschnitts samt ihrer Höhe aufgenommen.

Für die Auswertung der Sohlstruktur wurde im Vorhinein eine Liste mit den relevanten Habitaten je Fischgewässertyps erstellt. Betrachtet wurden hierbei die jeweiligen Leitarten und welche Habitate sie in dominierender, regelmäßig wiederkehrerender oder vereinzelter Form benötigen. Diese Kategorien wurden schlussendlich in Werte umgewandelt:

Dominierend = 3 regelmäßig wiederkehrend = 2 vereinzelt = 1 Zwischen dem Soll-Zustand nach Fischgewässertyp und dem im Feld aufgenommenem Ist-Zustand wurde schlussendlich die Differenz berechnet und somit eine Abweichung vom Soll-Zustand definiert:

keine Abweichung = 0 geringe Abweichung = 1 mittlere Abweichung = 2 starke Abweichung = 3

Um einen gemeinsamen Wert für die Abweichung eines 100 m Abschnitts vom Soll-Zustand zu berechnen, wurden die jeweiligen Differenzen addiert und durch ihre Menge geteilt. Das Ergebnis wurde in Form einer Karte festgehalten, erstellt mit QGIS.

2.2.2 Uferrandstreifen

Der Uferrandstreifen (auch Gewässerrandstreifen) spielt eine zentrale Rolle besonders in stark agrarwirtschaftlich genutzten Gebieten. Anthropogene Eingriffe wie Stoffeinträge durch die Landwirtschaft sollen durch einen intakten Uferrandstreifen abgepuffert werden (LANUV NRW 2021).

Über TIM-Online wurden die TIFF-Dateien, welche die Münstersche Aa und den Schlautbach abbilden, heruntergeladen und in QGIS eingefügt. Um die beiden Flüsse wurde ein Puffer aus 5 m gelegt, entsprechend der nach § 38 WHG Abs. 3 festgelegten Breite eines solchen Uferrandstreifens. In den zuvor festgelegten Abschnitten von je 100 m wurde nun bewertet inwiefern diese 5 m Uferrandstreifen vorhanden und intakt waren. Damit eine Berechnung der Strahlwirkung aus allen Einzelparametern möglich ist, wurde auch hier eine Skala von 0 – 3 verwendet:

Uferrandstreifen von 76-100% = 0 Uferrandstreifen von 51-75% = 1 Uferrandstreifen von 26-50% = 2 Uferrandstreifen von 0-25% = 3

Das Ergebnis wurde in Form einer Karte festgehalten, erstellt mit QGIS.

2.2.3 Beschattung

Eng mit den Uferrandstreifen verbunden ist die Beschattung des Gewässers durch Gehölzbestand. Positive Effekte sind vor allem auf Makrophyten und die Gewässertemperatur bekannt (LANUV NRW 2021).

Wie der Uferrandstreifen so wurde auch die Beschattung über die TIFF-Dateien von TIM-Online ausgelesen. Hierbei wurde bewerted wie viel des im 100m-Abschnitt befindlichen Gewässers mit Baumbewuchs überstanden war. Die Bewertung fand mit derselben Skala wie schon bei dem Uferrandstreifen statt:

Beschattung von 76-100% = 0
Beschattung von 51-75% = 1
Beschattung von 26-50% = 2
Beschattung von 0-25% = 3

Das Ergebnis wurde in Form einer Karte festgehalten, erstellt mit QGIS.

2.2.4 Strahlwirkung

Um von den Einzelbewertungen der Sohlstruktur, des Uferrandstreifens und der Beschattung zu einer Aussage über die gesamte Strahlwirkung der Münsterschen Aa gelangen zu können, wurden alle unter 2.2 beschriebenen Parameter zusammengezogen. Wie bei der Berechnung der Sohlstruktur wurden alle Werte je 100 m Abschnitt addiert und durch ihre Anzahl geteilt. Somit ergab sich folgende Skala, welche die Abweichung vom Soll-Zustand aufzeigt:

Sehr gute Strahlwirkung = 0-0.5Gute Strahlwirkung = 0.6-1.1Mäßige Strahlwirkung = 1.2-1.7Unbefriedigende Strahlwirkung = 1.8-2.3Schlechte Strahlwirkung = 2.4-3.0

Das Ergebnis wurde in Form einer Karte festgehalten, erstellt mit QGIS.

2.3 Untersuchung der biologischen Qualitätskomponenten

Für die Fragestellungen bzgl. der Habitatqualität und des Wiederbesiedlungspotentials wurden faunistische Daten in Untersuchungsstrecken mit Wiederbesiedlungspotenzial und/oder Gewässerentwicklungsmaßnahmen sowie in Abschnitten mit unterschiedlichen hydrochemischen Prägungen generiert.

2.3.1 Elektrobefischung

Die Fischfauna wurde durch Elektrobefischungen untersucht. Es wurden insgesamt 20 Stellen beprobt. Diese fanden sich auf das gesamte EZG der Münsterschen Aa verteilt mit einem Fokus auf Mündungsbereiche der Nebenflüsse und WRRL-Monitoringsstellen des LANUV (Anhang 3).

Hierbei wurden Wat-, Treidel- und Bootsbefischungen durchgeführt. Je nach Gewässerbreite wurde der Fischbestand durch einen oder zwei Anodenführer (ab fünf Metern Gewässerbreite) (MULNV NRW 2009, S. 32) erfasst. Die Bewertung der Probestellen, welche befischbar waren, wurde abgeschlossen und liegt vor. Aufgrund von langanhaltender Hitze im Jahr 2018 und Trockenheit in den Jahren 2018 und 2019 konnten nicht alle Probenahmestellen befischt werden. Ebenso verhält es sich mit den Befischungen im Jahr 2020, zu welchen die Corona-Pandemie erschwerend hinzukam. Somit wurde sich auf die Probestellen fokussiert, welche in den beiden vorherigen Jahren ebenfalls befischt werden konnten, um eine Untersuchungsreihe über alle drei Projektjahre zu haben. Zuzüglich wurden im Jahr 2021 die größere Umgestaltungsmaßnahme bei Hohenholte erneut befischt und mit den Befischungen vor und während der Maßnahme verglichen.

Die Methodik zur fischfaunistischen Datenerhebung sowie der konkreten Festlegung der Untersuchungsabschnitte wurde dem "Handbuch zu fiBS" (VDFF, 2009) und dem "Leitfaden Monitoring Oberflächengewässer" (MULNV NRW o.J.) entnommen; besonders relevante methodische Kriterien werden nachfolgend angesprochen:

- Es wurden keine Untersuchungsstrecken in Staubereiche gelegt.
- Zudem wurde berücksichtigt, dass die Untersuchungsstrecken nicht durch Querbauwerke zerschnitten werden. Da nicht auszuschließen war, dass die in ELWAS-WEB (MULNV NRW o.J.) hinterlegten Daten zu Querbauwerken nicht dem aktuellen Zustand entsprechen, wurde im Vorfeld eine Begehung und Überprüfung der Gewässerabschnitte durchgeführt.
- Die Fischbestandsdaten wurden ausschließlich durch Elektrobefischung erhoben, da fiBS für entsprechende Datensätze entwickelt wurde (VDFF 2009, S. 27).
- Das "Handbuch zu fiBS" (VDFF 2009, S. 31) sieht zu befischende Mindeststreckenlängen vor. Diese Mindeststreckenlängen wurden im "Leitfaden Monitoring Oberflächengewässer" (MULNV NRW 2009, Anlage D9) für das Land Nordrhein-Westfalen modifiziert. Je nach Fischgewässertyp (FiGt) sieht der Leitfaden unterschiedliche Mindestbefischungsstreckenlängen vor, die auch im Landesmonitoring der Fische Anwendung finden. Zur Gewährleistung der Vergleichbarkeit der im Rahmen des Projektes erhobenen Daten mit den Untersuchungsergebnissen des Landesmonitorings wurden, sofern möglich, die Mindeststreckenlängen des Leitfadens eingehalten. Im FiGt 05 "oberer Forellentyp Tiefland", wie er im Bereich Lasbecker Aa vorliegt, sind

dies 200 m. Im FiGt 06 "unterer Forellentyp Tiefland", der vielen Untersuchungsstrecken des Projektgebietes zugewiesen ist, sind dies 300 m. Untersuchungsstrecken im "unteren Barbentyp Tiefland" (FiGt 25) sind entsprechend des Landesleitfadens auf einer Streckenlänge von 400 m zu befischen.

 Gemäß des "Leitfadens Monitoring Oberflächengewässer" (MULNV 2009, Teil B, S.56 f.) sind bei einem FiGt-Wechsel, je nach vorliegenden FiGt Mindestabstände bei der Festlegung von Befischungsstrecken einzuhalten. Bei den o.g. im Einzugsgebiet der Münsterschen Aa auftretenden FiGt beträgt dieser Mindestabstand 200 m.

Weitere Kriterien:

- Im Jahr 2016 erfolgten in Vorbereitung zum Projekt bereits Elektrobefischungen im Einzugsgebiet der Münsterschen Aa durch die WWU Münster. Einige der untersuchten Strecken lagen kongruent zu den im Projektantrag angegebenen Untersuchungsstrecken. Um Vergleiche zu den 2016 erhobenen Befischungsdaten ziehen und diesen damaligen Datensatz nutzen zu können, wurden, sofern geeignet, exakt dieselben Strecken für die Befischungskampagnen im Rahmen des Projektes ausgewählt.
- Darüber hinaus wurden Befischungsabschnitte gemäß diverser struktureller Ausweisungen und Voraussetzungen gewählt. Beispielsweise wurden neben den im aktuellen Umsetzungsfahrplan der Stadt Münster ausgewiesenen "Vorhandenen" und "Potenziellen Strahlursprüngen", begradigte, ausgebaute, vertiefte, strukturarme Abschnitte ohne Ufergehölze festgelegt.

Da es sich bei den befischten Strecken um HMWB handelt, sind nicht die Fischreferenzen der Fischgewässertypen, sondern die auf deren Basis entwickelten "Fisch-HÖPs" (das "höchste ökologische Potenzial der Fische") in das fiBS einzupflegen (PLANUNGSBÜRO KOENZEN 2016, S.1).

2.3.2 Makrozoobenthos-Beprobung

Die Makrozoobenthos wurde mit Hilfe des Multi-Habitat-Samplings untersucht (MEIER 2006). Im Gegensatz zur Elektrobefischung, war lediglich eine reguläre Beprobung im Projektrahmen vorgesehen. Diese fand im Jahre 2019 statt. Es wurden insgesamt 21 Stellen im EZG beprobt. Viele der MZB-Probestellen liegen mit den Befischungsstellen überein, insbesondere vor und nach den Mündungen der Nebenflüsse (Anhang 2). Für die Bewertung von kleineren Maßnahmen im Strahlwirkungs- und Trittsteinkonzept und ihrer Wirkung wurden drei ausgewählte Maßnehmen im Schlautbach im Jahr 2020 zuzüglich beprobt. Ebenso wurde die Probestelle Aa4, welche sich an der Umgestaltungsstrecke bei Hohenholte befindet im Jahr 2021 und 2022 erneut beprobt, um einen Vergleich zu den Ergebnissen vor und während der Umgestaltung zu ziehen. Während der Umgestaltungsmaßnahmen in 2021 wurde direkt unterhalb dieser in einem Bereich des alten Flussbettes beprobt. Im darauf folgendem Jahr wurden die Daten auf Höhe des alten Beprobungsabschnitts in dem nun renaturierten Bereich erhoben.

Die Beprobung im Feld sah einen 25-50 m langen representativen Abschnitt des Gewässers vor, welcher mit einem 500 µm Kescher mit quadratischer Grundfläche (25 x 25 cm) per Kicksampling beprobt wurde. Hierbei wurden auf de Gesamtlänge des Abschnitts je nach Abundanz Teilproben pro Substrattyp gelegt. Eine Teilprobe entspricht 5% des Subtrats an der Gesamtdeckung des Sohlsubstrats im Beprobungsabschnitt und die Summe der Teilproben muss 100% (20 Teilproben) ergeben. Beim Vorkommen von Substrattypen mit besonderer Bedeutung für das MZB, aber einer Deckung < 5% des Gesamtsubstrates kann eine 21. Teilprobe genommen werden. Die Proben wurden in 75% Ethanol konserviert.

Das Sortierverfahren im Labor fand ebenfalls nach MEIER ET AL (2006) statt. Von dem gesamten Probenmaterial wurde per Zufallsprinzip mit Hilfe eines 6 x 6 cm Ausstechrahmens je fünf Teilproben entnommen. Die Teilproben wurden zusammengenommen und bestimmt. Waren nicht mindestens

350 bestimmbare Individuen darin enthalten, wurden neue fünf Teilproben genommen. Die einzelnen Individuen wurden soweit möglich bestimmt. Die Auswertung dieser Ergebnisse fand schlussendlich mit PERLODES statt.

2.3.3 Effekte der Hydrochemie und der Habitatparameter auf die Fisch- und Makrozoobenthoszönosen

Zur Ermittlung welche der aufgenommenen Parameter (Habitatcharakteristika und hydrochemische Parameter) die Zusammensetzung der Artengemeinschaften der Makrozoobenthos- und Fischzönosen bestimmen, wurden Detrended Correspondence Analysen in R mit dem Softwarepaket Vegan gerechnet. Zum einen wurden die Effekte der _Hydrochemie und der Habitatcharakteristika für die Fischgemeinschaft, zum anderen für die Makrozoobenthosgemeinschaft und beider Zönosen zusammen berechnet. Dazu wurden für die Hydrochemie die Parameter Leitfähigkeit, Chlorid, Kalium, Nitrat sowie die Spurenstoffe Terbuthylazin, MCPA, Carbamazepin und Metoprolol und für die Habitatcharakteristika die Parameter Makrolithal, Mesolithal, Mikrolithal, Akal, Psammal/Psammopelal, Argyllal, Algen, Submerse Makrophyten, Emerse Makrophyten, Lebende Teile terrestrischer Pflanzen, Xylal, CPOM, FPOM und Debris in das Modell eingefügt sowie alle bestimmten Fisch- und Wirbellosenarten. Bei der Hydrorchemie wurden die Daten der Mittelwerte aller Stichtagsbeprobungen der einzelnen Probestellen verwendet und bei den Fischen die Daten der Beprobung aus dem Jahr 2019, somit aus dem gleichen Jahr wie die der Makrozoobenthosbeprobung.

3 Projektergebnisse

Die Projektergebnisse werden im Folgenden nach Fragestellungen gegliedert diskutiert. Anders als in den vorangegangenen Zwischenberichten werden sie nicht mehr nach Arbeitspaketen aufgelistet. Die Fragestellungen leiten sich aus den Zielen und Hypothesen des Projektes ab.

3.1 In welchem Zustand befinden sich die hydrochemischen Qualitätskomponenten im Einzugsgebiet der Münsterschen Aa?

3.1.1 Räumliche Konzentrationsschwankungen im EZG

Durch fünf Stichtagsprobenahmen an 35 Probenahmestellen im gesamten Einzugsgebiet der

Münsterschen Aa (Anhang 3) konnte die räumliche und eine begrenzte zeitliche Variabilität der Wasserqualität beurteilt werden. Die Aussagekraft der zeitlichen Komponente ist jedoch als eher allgemein einzustufen, da bei diesem Probenahmetyp nur zwischen fünf verschiedenen Zeitpunkten unterschieden werden kann. Detailliertere Rückschlüsse auf jahreszeitliche Schwankungen der Gewässerqualität lassen die Ergebnisse der Sammlerprobenahmen aus dem folgenden Kapitel zu.

Die Stichtagsprobenahmen zeigen, dass zum Beispiel die besonders bedeutsame Nitratkonzentration im Gewässer sehr stark zwischen den Beprobungen schwankt:

In Abbildung 5 sind beim Vergleich der Konzentrationen im Juli 2019 mit denen im Dezember 2019 deutliche Unterschiede an fast allen Probenahmestellen erkennbar, die eine erheblich höhere Gewässerbelastung im Winter anzeigen. Vergleicht man dabei die Konzentrationen, die im Juli 2019 gemessen wurden mit denen der Beprobung im Dezember 2019, sind deutliche Unterschiede an fast allen Probenahmestellen erkennbar, die auf eine höhere Gewässerbelastung durch Nitrat im Winter schließen lassen. Eine saisonale Entwicklung der Nitrat-Konzentrationen mit höheren Konzentrationen im Winter ist plausibel und wurde bereits an anderen Standorten wie der Nisa (Grenzgebiet DE/CZ) (KÄNDLER ET AL., 2016) oder auch im Süd-Osten Großbritanniens (COOPER ET AL., 2020) beobachtet.

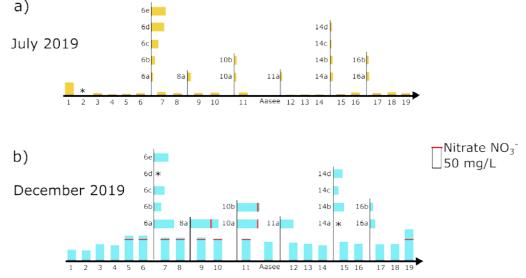
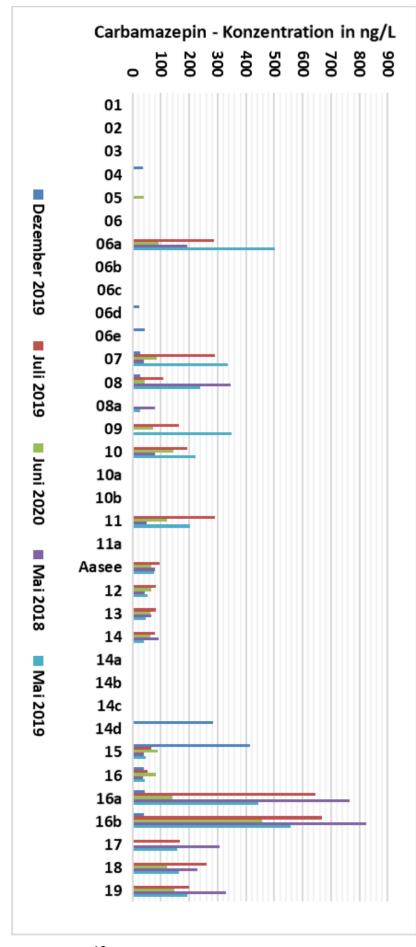


Abbildung 5: Verteilung der Nitratkonzentration für die Stichtagsprobenahme a) Juli 2019 und b) Dezember 2019. Die höchste Säule stellt die höchste gemessene Konzentration von 50 mg/L dar, die anderen Säulen sind entsprechendskaliert. Messwerte über 50 mg/L sind mit einem roten Strich markiert Die Münstersche Aa ist auf der x-Achse inFließrichtung von links nach rechts dargestellt, die einzelnen Zuflüsse auf der y-Achse. Nicht beprobte Probenahmestellen sind mit einem * markiert. Eine Liste der Probenahmestellen ist im Anhang 2 zu finden.

Mehr Aussagekraft kommt den Stichtagsprobenahmen im Hinblick auf die räumlichen Verteilungen der chemischen Gewässerstressoren zu. Durch die hohe räumliche Auflösung lassen sich Eintragspfade bzw. Hotspots identifizieren und Rückschlüsse auf die Herkunft der Stressoren mittelsTarget- und Non-Target Analytik ziehen. Dabei hilft nicht nur die Analyse im Hinblick auf Markersubstanzen, sondern auch die Verwendung von statistischen Methoden zur Parameterpriorisierung, sowie die Identifizierung von unbekannten Substanzen mittels Datenbanken.

Bei der Gesamtbetrachtung aller Stichtagsprobenahmen fällt auf, dass die Anzahl der nachgewiesenen Substanzen sowie auch die Konzentration der Ionen im Flussverlauf keinem allgemeinen Muster folgen. Die Messwerte für die einzelnen Parameter schwanken dabei je nach Probenahmestelle und Zeitpunkt der Stichtagsprobenahme mitunter stark. Dennoch lassen sich die Probenahmestellen in der Nähe der beiden Kläranlagen im EZG (Probenahmestellen 06a, 16a und 16b, Abbildung 6 und Anhang 8-10) als Hotspots für hohe Konzentrationen von Arzneimitteln, sowie an Probenahmestelle 16a und 16b auch für abwasserbürtige Ionen wie Chlorid identifizieren.


Im Oberlauf (Probenahmestellen 1 - 5, 06e - 6b) konnten hingegen nur vereinzelt geringe Mengen von Arzneimittelrückständen nachgewiesen werden. Nur Koffein wurde in geringen Konzentrationen detektiert (Anhang 10). Koffein wird bei der mechanisch-biologischen Abwasserreinigung in der Kläranlage vollständig entfernt, jedoch kann es als Marker für Einleitungen aus dezentralen Kleinkläranlagen bzw. "frischeres" Abwasser gesehen werden (JEKEL UND DOTT 2013). Im oberen EZG sind diverse Kleinkläranlagen vorhanden (Anhang 16).

Im unteren EZG (abstromig Probenahmestelle 08) können verschiedene Arzneimittel an allen Probenahmestellen detektiert werden. Besonders nach Zufluss des Wöstebachs, über den etwa ein Drittel des geklärten Abwassers der Stadt Münster abgeleitet wird, gelangen Arzneimittel-konzentrationen von 200 ng/L bis zu 800 ng/L (z. B. Carbamazepin) und von >1 μ g/L(z. B. Metoprolol) in die Münstersche Aa (Abbildung 6 und Anhang 10). Ähnliches gilt für dieKonzentration von Chlorid und Kalium, für die im Juli 2019 an der Mündung des WöstebachsKonzentrationen von >170 mg/L (Chlorid) bzw. >30 mg/L (Kalium) gemessen wurden (Anhang 9). Die Konzentration von Nitrat nimmt bei der Stichtagsbeprobung im Winter (StichtagsprobenahmeDezember 2019) im Oberlauf bis zur Probenahmestelle 06 (Münstersche Aa vor Schlautbach)

kontinuierlich zu und bleibt danach bis zum Eintritt der Münsterschen Aa in den Aaseeweitestgehend konstant. Während der Passage durch die Stadt Münster sinken die Konzentrationennur leicht und steigen schließlich im Unterlauf wieder.

Für die Stichtagsprobenahmen im Mai 2018, Mai 2019, Juli 2019 und Juni 2020 sinkt die Nitratkonzentration von Probenahmestelle 01 bis zur Probenahmestelle 06 hingegen zunächst und steigt durch den Zufluss des Schlautbachs an. Bis zum Eintritt der Münsterschen Aa in den Aasee bleibt die Konzentration weitestgehend konstant und ist bleibt nach der Passage durch den Aasee auf einem geringen Niveau. Erst durch Zufluss des Kinderbachs steigt die Nitratkonzentration wiederan und bleibt bis zur Mündung auf einem relativ konstanten Niveau.

Auch wenn das untere EZG etwas weniger durch landwirtschaftliche Nutzung geprägt ist, kann besonders das Maisherbizid Terbuthylazin an fast allen Probenahmestellen detektiert werden. Dabei wurden Konzentrationen zwischen 10 ng/L und >1 μ g/L gemessen. Im Juni 2020 konnte an 29 von 34 beprobten Probenahmestellen im EZG eine Terbuthylazinkonzentration von >1 μ g/L gemessen werden (Anhang 10). Dies ist vermutlich darauf zurückzuführen, dass die Beprobung unmittelbar nach dem ersten großen Niederschlagsereignis (>50 L/m²) kurz nach der Ausbringzeit von Terbuthylazin durchgeführt wurde. Während der Ausbringzeit von Terbuthylazin von Mitte April bis Mitte Juni (Steverakte, 2018) war es sehr trocken (Niederschlagsumme April 2020: 17 L/m²; Mai 2020: 16 L/m²), sodass mit dem Niederschlagsereignis eine hohe Konzentration in kurzer Zeit ins Gewässer gelangen konnte.

Overflächengewässer erkennbar Zuläufe an; an den Probenahmestellen 06a (Zulauf des Kläranlagenablaufs Havixbeck) und 16a (Zulauf des Kläranlagenablaufs Münster) sind die Einflüsse der Kläranlagen auf dassen auf Abbildung 6: Entwicklung der Arzneimittelkonzentration in ng/L im EZG am Beispiel des AntiepileptikumsCarbamazebin zu allen fünf Stichtagsbeprobungen. Kleinbuchstaben zeigen

Die Wassertemperaturen der beprobten Stellen variieren besonders für die Probenahmen im Sommer sehr stark. Während die Temperatur an der Quelle des Schlautbachs (Probenahmestelle 06e) konstant bei etwa 10 °C liegt, wurde im unteren EZG, vor Zufluss des Kinderbachs (Probenahmestelle 14) eine Temperatur von 23,3 °C im Mai 2018 gemessen (Anhang 8). Hohe Wassertemperaturen, verringern u.a. die Löslichkeit von Sauerstoff im Wasser. Die Oberflächengewässerverordnung (OGewV 2016) sieht für Gewässer der Typen 14 (sandgeprägter Tieflandbach) und 18 (lösslehmgeprägter Tieflandbach), wie sie im EZG der Münsterschen Aa vorkommen, maximale Wassertemperaturen im Sommer von <20 °C für die Erreichung des höchstenökologischen Potenzials vor (OGEwV 2016). Diese Anforderungen kann die Münstersche Aa nach Auswertung der Stichtagsprobenahmen derzeit nicht erfüllen und dies ist auch künftig mit noch zunehmender Erwärmung durch den Klimawandel nicht zu erwarten.

Die Auswertung der Stichtagsprobenahmen im Hinblick auf Vor-Ort Parameter sowie der Konzentration der Ionen und organischen Spurenstoffe liefert bereits wertvolle Erkenntnisse bei der Identifizierung von "Hotspots" für die Gewässerverunreinigung und Haupteintragspfaden. Allerdings kann man mit diesem Verfahren nur gezielt nach bekannten Parametern suchen. Stoffe, die nicht auf Monitoringlisten zu finden sind oder nur regional und saisonal auftreten, werden dabei nicht wahrgenommen. Daher wurden die vorhandenen Messdaten auch mittels Non-Target Analytik untersucht.

3.1.2 Non-Target Analytik

Für die Non-Target Analytik wurden die Rohdaten der HPLC-HRMS-Messungen der Stichtagsprobenahmen zunächst mit dem Programm MZMine aufbereitet und für jede Probenahmestelle Featurelisten erstellt. Ein Feature ist dabei stets durch die gemesseneexakte Masse, die zugehörige Retentionszeit und die Intensität des Signals gekennzeichnet.

Auf Basis der Featurelisten wurden weitere statistische Analysen und Datenbanksuchen durchgeführt, um Unterschiede zwischen den Probenahmestellen genauer zu untersuchen, unbekannte Stoffe zu identifizieren und weitere Hinweise zu den Eintragspfaden der Stoffe zu erhalten.

Tabelle 2: Anzahl der detektierten Features (Summe aus Detektionen im ESI+ und ESI- Modus). Mit * markierte Probenahmestellen wurden nicht beprobt

Probenahmestelle	Mai 18	Mai 19	Jul 19	Dez 19	Jun 20
1	1458	211	695	535	741
2	228	322	*	1269	*
3	83	267	1430	899	1789
4	690	253	2337	1728	1865
5	837	779	3369	1767	2338
6	1711	857	1701	1824	2222
6a	2853	1056	3076	2304	2761
6b	6970	127	1398	1156	1054
6c	359	71	1171	1561	715
6d	292	58	917	*	1103
6e	230	54	780	527	551
7	1092	950	3306	2424	1916
8	1611	748	2247	2548	3421
8a	785	1119	2447	3091	3091
9	*	1057	1901	4146	2444
10	968	927	2240	3105	3249
10a	5648	918	2147	2679	3322
10b	1119	802	3251	2228	2671
	·				
11	986	879	1782	1715	2831
11a	731	912	1929	2545	3202
Aasee	2554	997	2777	1739	2913

Probenahmestelle	Mai 18	Mai 19	Jul 19	Dez 19	Jun 20
12	1325	965	3145	1649	3329
13	1280	1049	3360	1747	3613
14	7535	893	2945	1644	3856
14a	4833	919	1336	*	3455
14b	6682	643	1405	1105	3697
14c	4886	798	1038	1576	2326
14d	2901	579	1317	1412	3068
15	1881	935	1516	1329	2980
16	413	859	1678	1443	4288
16a	4673	6392	9911	3475	3512
16b	5263	5833	3431	3748	6726
17	2876	4068	2294	1689	*
18	2839	1045	2596	1833	5144
19	3117	1199	2614	1629	5814

Die Anzahl der detektierten Features nimmt für fast alle Probenahmen im Flussverlauf zu und ist an den Probenahmestellen am Wöstebach am höchsten und an der Popenbecker Aa (Probenahmestelle 01) und an der Quelle des Schlautbachs (Probenahmestelle 06e) am geringsten (Tabelle 2). Nur bei der Probenahme im Mai 2018 zeigte sich ein anderes Bild. Dort wurden an der Probenahmestelle 06b die meisten und an der Probenahmestelle 03 die wenigsten Features detektiert. Besonders am Schlautbach nimmt die Featureanzahl von der Quelle (Probenahmestelle 06e) bis zur Mündung (Probenahmestelle 06a) in die Münstersche Aa generell zu. Die Featureanzahl an den einzelnen Probenahmestellen schwankt zu den verschiedenen Beprobungskampagnen und war für die Beprobung im Mai 2019 am geringsten. Die höchsten Featureanzahlen wurden für die meisten Probenahmestellen bei den Stichtagsprobenahmen im Juli 2019 und Juni 2020 gemessen.

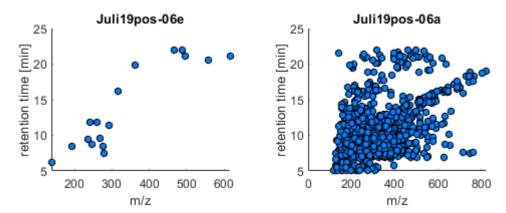


Abbildung 7: Features im positiven ESI-Ionisationsmodus der Beprobung im Juli 2019 an den Probenahmestellen 06e (Arningsquelle) und 06a (Schlautbach Mündung)

Die Featureanzahl allein gibt noch keine Aussage über die Herkunft und Intensität der Belastungen, kann aber möglicherweise dazu dienen, Gewässerabschnitte mit günstigen chemischen Bedingungenfür ein gutes ökologisches Potential zu identifizieren. Genauere Informationen zu der Herkunft und der Art der Features im Gewässer können durch detailliertere Auswertung wie z. B. Abgleiche mit Datenbanken erhalten werden.

In Abbildung 7 sind beispielhaft die Unterschiede zwischen den detektierten Features im positiven Ionisationsmodus zwischen den Probenahmestellen 06e (Arningsquelle, geringe Anzahl detektierter Features) und 06a (Schlautbach Mündung, hohe Anzahl detektierter Features) der Stichtagsprobenahme Juli 2019 dargestellt. Weiterhin fällt besonders die deutliche Zunahme der Featureanzahl von der Quelle des Schlautbachs bis zur Mündung in die Münstersche Aa auf (Tabelle 2). Über den Charakter sowie den Eintragspfad der hinzukommenden Features, lässt sich anhand dieser Grafik noch keine Aussage treffen.

Eine weitere Möglichkeit zum Vergleich von jeweils zwei Probenahmestellen untereinander und zur Identifizierung von Eintragspfaden bietet die Einordnung der gefundenen Features in die folgenden Kategorien:

- Eliminierung = Feature ist in Probe 1 vorhanden, aber in Probe 2 nicht
- Teilelimination = Feature hat in Probe 1 eine höhere Intensität als in Probe 2
- Konstanz = Feature hat in Probe 1 und 2 die gleiche Intensität
- Zunahme = Feature hat in Probe 2 eine höhere Intensität als in Probe 1
- Neubildung =Feature ist in Probe 2 vorhanden aber nicht in Probe 1

In Abbildung 8 ist ein derartiger Vergleich zu sehen: Zwischen Probenahmestelle 16 (Münstersche Aa vor Wöstebach) und 17 (Münstersche Aa nach Wöstebach; inklusive Ablauf der Hauptkläranlage Münster) fallen 470 Features in die Kategorie "Neubildung". In diese Kategorie fallen sowohl neue Features, die durch diffuse oder Punktquellen (wie z. B. das Abwasser aus der Hauptkläranlage Münster) zwischen den Probenahmestellen in die Münstersche Aa eingeleitet werden, aber auch mögliche neugebildete Transformationsprodukte. In gelber Farbe sind zudem Features markiert, die aufgrund der Target-Analytik als Arzneimittel identifiziert werden konnten. Dies lässt Rückschlüsse auf den Ursprung der Einträge zwischen den Probenahmestellen zu, in diesem Fall zum Beispiel den Zufluss des Wöstebachs, der durch geklärtes Abwasser der Hauptkläranlage Münster gespeist wird. Als zweitgrößte Kategorie ist die Elimination (213 Features) zu nennen. Diese kann zum Beispiel durch Abbau- oder Umwandlungsreaktionen im Gewässer erfolgen oder durch Verdünnung durch Zuflüsse und Rückgang der Konzentration unter die Detektionsgrenze. Es fällt auf, dass nur wenige Features in die Kategorien Teilelimination und Konstanz fallen (13), was für einen deutlichen Unterschied der Belastung durch Spurenstoffe im direkten Vergleich an diesen Probenahmestellen spricht. Trotz der Unterschiede gibt es auch Features, deren Intensität von Probenahmestelle 16 zu Probenahmestelle 17 zunimmt (27). Diese Zunahme kann durch weiteren Eintrag der Features aber auch durch Umwandlungsreaktionen erklärt werden.

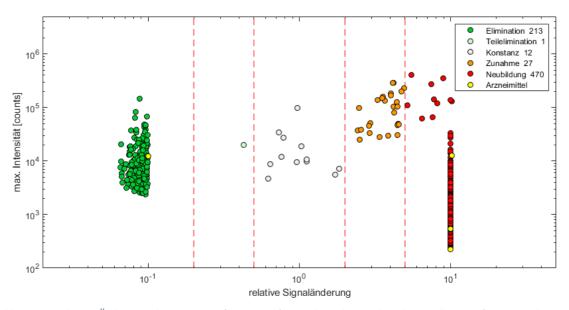


Abbildung 8: Relative Änderung der Features (ESI positiv) zwischen den Probenahmestellen 16 (Münstersche Aa vor Wöstebach) und 17 (Münstersche Aa nach Wöstebach) unterteilt in die Kategorien Elimination, Teilelimination, Konstanz, Zunahme und Neubildung. Zahlen in der Legende stellen die Zahlen der Features dar.

Diese Form der Auswertung bietet eine Möglichkeit, um Eintragspfade im Flussverlauf der Münsterschen Aa genauer zu charakterisieren und für manche Stellen, die als Strahlursprünge unter ökologischen Gesichtspunkten geeignet sind, möglicherweise gezielte Maßnahmen zur Verbesserung

der chemischen Wasserqualität zu ergreifen. Für eine genaue Identifizierung der gefunden Features ist jedoch ein Datenbankabgleich erforderlich.

Für die Featurelisten wurde ein Datenbankabgleich mittels des GNPS webinterface durchgeführt, welche verschiedenen Datenbanken mit den ermittelten Features abgleicht. Dabei konnten z. B. an der Mündung des Schlautbachs (Probenahmestelle 6a) weitere Stoffe, die nicht Teil des Target-Substanzspektrums sind, identifiziert werden.

Durch die Datenbankabgleiche konnten unter anderem Substanzen aus der Gruppe der Sartane nachgewiesen werden. Sartane werden in der Behandlung von Bluthochdruck eingesetzt und weisen stark steigende Vebrauchsmengen in Deutschland auf (>100 t/a) (Letzel et al., 2013). In der Probe aus dem Schlautbach (Probenahmestelle 06a) wurde Candesartan durch die Datenbanksuche identifiziert, welches in Kläranlagen nur zu etwa 20% eliminiert werden kann (Letzelet al., 2013). Außerdem wurde das Transformationsprodukt Valsartansäure im Schlautbach (Probenahmestelle 06a) detektiert, was auf weitere Sartane im Gewässer schließen lässt. Sartane sind in den vergangenen Jahren zu einem Problem in der Trinkwasseraufbereitung besonders in Berlin geworden (Schimmelpfennig, 2019) und sind mittlerweile durch das Umweltbundesamt mit einem Gesundheitlichen Orientierungswert (GOW) im Trinkwasser von 300 ng/L ausgewiesen worden (UMWELTBUNDESAMT, 2015). Sartane wurden auch in der Ems und Ruhr, sowie in bayerischen Fließgewässern nachgewiesen [2] (BAYER ET AL., 2014, OBERLEITNER ET AL., 2021).

Für den Schlautbach und die Münstersche Aa konnten Sartane bisher nur identifiziert werden. Eine Quantifizierung war nicht möglich, da entsprechende Standards erst nach Messung der Proben aus den Stichtagsbeprobungen zum Kalibrationsstandards für die HPLC-MS Messungen hinzugefügt wurden. Allerdings konnten die Mischproben der Probensammler im EZG, die nach Beschaffung der Standards genommen wurden, auf Sartane untersucht werden. Valsartansäure, ein Abbauprodukt von Valsartan konnte dabei am Sammler des oberen EZG in 28 von 36 Mischproben mit Konzentrationen über 1 μg/l gemessen werden (Anhang 15). Auch die anderen Sartane wurden in allen Wochenmischproben detektiert und zeigten alle einen ähnlichen Verlauf. Die höchsten Konzentrationen der Sartane wurden an beiden Probensammlern im Juni 202 detektiert und die niedrigsten Konzentration konnten zum Ende des Jahres in KW 53/20 detektiert werden. Auch wenn die untersuchten Proben nur einen Teil des Kalenderjahres abbilden, deuten die Messergebnisse auf einen ähnlichen jahreszeitlichen Verlauf, wie den der anderen untersuchten Arzneimittel hin.

Neben den Sartanen wurden das Antiallergikum Levocetirizin, das Diabetesmedikament Sitagliptin und 10,11-trans-Dihydroxy-10,11-dihydrocarbamazepin, ein Metabolit von Carbamazepin gefunden. Es fällt auf, dass die identifizierten Substanzen an der Mündung des Schlautbachs alle aus dem humanmedizinischen Bereich stammen und wahrscheinlich auf die Einträge aus der Kläranlage Havixbeck oder dezentralen privaten Kleinkläranlagen im Einzugsgebiet des Schlautbachs zurückgehen. Eine Unterscheidung der beiden Eintragspfade war bisher nicht möglich.

3.1.3 Zeitliche Konzentrationsschwankungen an zwei Standorten im oberen und unteren EZG

Jahreszeitliche Abflussschwankungen der Münsterschen Aa spiegeln sich auch in Schwankungen der Konzentrationen der untersuchten Parameter wider. Detaillierte Informationen zu diesen Schwankungen liefern die Wochenmischproben, die durch die automatisierten Probensammler an den Standorten am Ende des oberen EZG und im Mündungsbereich der Münsterschen Aa gesammelt wurden. Insgesamt konnten die jahreszeitlichen Schwankungen der Gewässerqualität für fünf (bzw. vier für Spurenstoffe) hydrologische Jahre im oberen EZG (2015 - 2020 (bzw. 2016 - 2020 für Spurenstoffe)) und für zwei hydrologische Jahre (2018 - 2020) für das gesamte EZG studiert und bewertet werden. Betrachtet man zunächst die Lufttemperaturen im EZG (Abbildung 9), ist erkennbar, dass diese zwischen -4 °C und 26 °C im Wochendurchschnitt schwankt (schwarze Linie). Die mittlere Temperatur im EZG liegt bei 11,3 °C. In Abbildung 9 ist außerdem die mittlere Wassertemperatur am Sammler des unteren EZG von Jun. 2018 bis Okt. 2020 dargestellt (gelbe Linie). Diese zeigt einen ähnlichen Verlauf wie die Lufttemperatur und schwankt zwischen 4,6 °C und 23,7 °C. Der Mittelwert

liegt bei 13,3 °C.

Betrachtet man die kontinuierlich von der Drucksonde (OTT Hydromet) gemessene Wassertemperatur am Sammler im unteren EZG beispielhaft an einem Sommertag (Abbildung 10), lässt sich erkennen, dass sich das Gewässer auch auf Temperaturen >25 °C erhitzen kann und vor allem in den Nachmittagsstunden die höchsten Wassertemperaturen erreicht werden. Im Zusammenhang mit niedrigen Abflüssen und damit verbundenen niedrigen Wasserständen, kann die Temperatur als ein wichtiger Faktor für die Gewässerqualität im EZG gesehen werden und spielt auch für die Erreichung des höchsten ökologischen Potenzials eine große Rolle (OGEWV 2016). Insbesondere im Sommer werden teilweisekritische Situationen bis hin zum Trockenfallen von Gewässerabschnitten beobachtet.

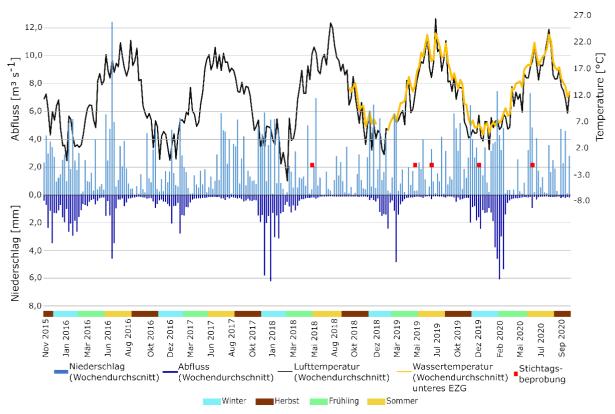


Abbildung 9: Abfluss und Temperaturschwankungen im Jahresverlauf am Probensammler des oberen EZG

Mit Blick auf das Abflussverhalten der Münsterschen Aa im oberen EZG (Abbildung 9, dunkelblaue Balken), lässt sich feststellen, dass der Abfluss erwartungsgemäß sehr stark den jahreszeitlichen Schwankungen unterliegt. Dabei treten hohe Abflüsse besonders in den Wintermonaten (Dez. – Mrz.) auf. In den trockenen und heißen Sommermonaten beschränkt sich der Abfluss hingegen auf ein Minimum und wird nicht unwesentlich durch den Ablauf Kläranlage Havixbeck gespeist (hoher Abwasseranteil im Gewässer). Eine Ausnahme stellt der Sommer 2016 dar, in dem durch regelmäßige Niederschläge vor allem im Juni 2016 ein erhöhter Abfluss generiert werden konnte. Die schnelle Reaktionszeit des Abflusses auf Niederschläge im EZG besonders im Winter lässt sich auf die geologischen Begebenheiten im oberen EZG zurückführen. Hier liegt überwiegend sehr gering durchlässiger sandig bis toniger Mergel (Geschiebemergel) vor, sodass die Münstersche Aa größtenteils durch Oberflächenwasser gespeist wird. Die Schwelle, an der der gefallene Niederschlag abflusswirksam wird, kann nicht genau angegeben werden und ist stark abhängig von Dauer und Intensität des Niederschlags, der Vegetationsperiode und der Bodenfeuchte bzw. der Bodenbeschaffenheit. Beispielsweise sind jedoch bei >4 mm Niederschlag in den Wintermonaten deutlich erhöhte Abflüsse erkennbar (Abbildung 9).

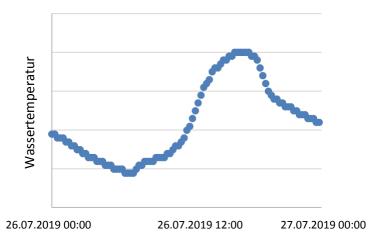


Abbildung 10: Temperaturschwankung im Tagesverlauf des 26.07.2019 am Probensammler unteres EZG. Die mittlere Lufttemperatur betrug 29,8 $^{\circ}$ C.

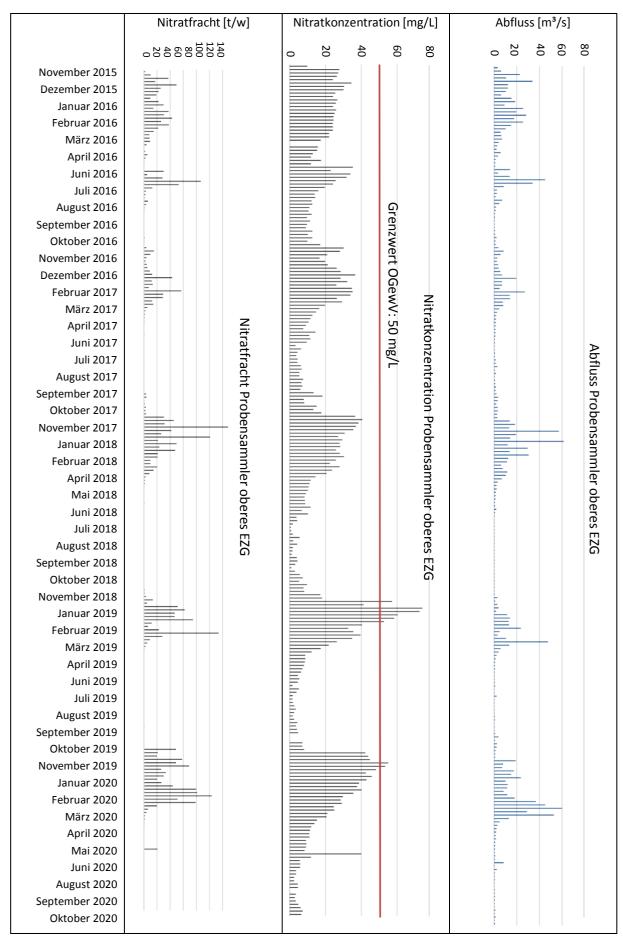


Abbildung 11: Jahreszeitlicher Verlauf der Nitratkonzentration [mg/L] und der resultierenden Nitratfracht [t/Woche] am Probesammler des oberen EZG.

Die meisten untersuchten Parameter können in Abhängigkeit von ihrem Abflussverhalten inverschiedene Kategorien eingeteilt werden:

- 1. Mit steigendem Abfluss steigende Konzentration: z.B. Nitrat und Phosphat
- 2. Mit zunehmendem Abfluss sinkende Konzentration: z.B. Carbamazepin, Chlorid, Metoprolol
- 3 Kein Zusammenhang mit Abfluss erkennbar: z.B. Terbuthylazin, MCPA, Mecoprop-P

Gruppe 1: Mit steigendem Abfluss steigende Konzentration:

In die erste Gruppe ist der Parameter Nitrat einzuordnen, welches besonders in den niederschlagsreichen Wintermonaten mit erhöhten Konzentrationen im Gewässer detektiert werden kann (Abbildung 11). In den Wintermonaten liegt die durchschnittliche Nitratkonzentration bei etwa 30 mg/L (2015 - 2020; Nov. - Feb.), während sie in den übrigen Monaten bei nur etwa 12 mg/Lliegt (2016 - 2020; Mrz. - Okt.). Die Durchschnittskonzentration der Wochenmischproben liegt dabeimit 17,8 mg/L unter den Vorgaben der OGewV von 50 mg/L (OGewV, 2016), jedoch wurden im Winter 2018/19 und 2019/2020 in insgesamt acht Wochenmischproben Werte über der Umweltqualitätsnorm (57,4 mg/L; 74,2 mg/L; 72,7 mg/L; 60,4 mg/L; 58,5 mg/L; 52,8 mg/L; 55,1 mg/L; 53,4 mg/L) gemessen. Damit kann die Nitratkonzentration in die Gewässergüteklasse III (90% der Messwerte <44,3 mg/L NO₃), die von der Bund-Länder-Arbeitsgemeinschaft Wasser (LAWA) festgelegt wurde, eingeordnet werden. Ziel ist die Erreichung der Güteklasse II, für die 90% der gemessenen Werte unter 11,1 mg/L NO₃ liegen müssen.

Es wird deutlich, dass der Eintrag von Nitrat im EZG der Münsterschen Aa stark witterungsabhängig ist. Hohe Konzentrationen im Winter und insbesondere sogar zu Sperrzeiten (Okt. - Feb.) treten auf. Diese Zeit ist von besonderer Bedeutung, da in den Wintermonaten 53% (2016/2017) bis99% (!) (2018/2019) der Nitratfracht im gesamten Jahr abfließen. Die Nitratfrachten schwanken dabei beträchtlich zwischen den einzelnen hydrologischen Jahren (Nov. – Okt.). Sie liegen mit 322 t im Jahr 2016/2017 am niedrigsten und mit 910 t im Jahr 2019/2020 am höchsten. Für die Einordnung der Stickstofffrachten (322 t – 910 t NO $_3$ entsprechen 73 – 205 t NO $_3$ -N, Umrechnungsfaktor 4,43) werden folgende Quellen in Betracht gezogen:

- Die Einträge aus der Kläranlage Havixbeck
- Die Einträge aus landwirtschaftlichen Flächen (62% landwirtschaftliche Flächen im EZG)
- Einträge aus dezentralen Kläranlagen, die in das Oberflächengewässer entwässern und imoberen EZG häufig vorkommen (Anhang 16).

Auf Grundlage von Einzelmessungen der Nitratkonzentration am Abfluss der Kläranlage Havixbeck (3 mg/L NO₃-N, 11.09.2020) und einem durchschnittlichen Abfluss der Kläranlage von 4 m³/s, kann eine Jahresfracht von etwa 3,8 t NO₃-N geschätzt werden, die durch die Kläranlage Havixbeck in die Münstersche Aa gelangt. Somit macht der Nitratstickstoff aus der Kläranlage Havixbeck etwa 2 – 5% der gesamten NO₃-N Fracht im oberen EZG aus. Diese Jahresfracht der Kläranlage entsprichtetwa 70 kg NO₃-N pro Woche. Nitrat-N aus der Kläranlage Havixbeck kann im Sommer (Jun. – Sep.) als Hauptquelle für Nitrat-N im oberen EZG angesehen werden, da die NO₃-N Wochenfrachten, die am Sammler im oberen EZG gemessen werden, mit etwa 5- 20 kg NO₃-N pro Woche ähnlich oder niedriger als die Frachten aus der Kläranlage sind. Die Abnahme der Fracht von der Kläranlage bis zum Probenahmestandort des automatisierten Probensammlers am Ende des oberen EZG kann durch den biologischen Umsatz des Nitrats entlang der Fließstrecke erklärt werden.

Ein Großteil des gemessenen Nitrats (ca. 70 - 200 t NO₃-N/a am Ende des oberen EZG) ist demnach besonders bei hohen Abflüssen auf andere Quellen als die kommunale Kläranlage zurückzuführen. Dabei spielt vermutlich die Flächennutzung des oberen EZG eine große Rolle. Das obere EZG wird umfangreich und intensiv landwirtschaftlich genutzt (77% landwirtschaftliche Fläche der Gesamtfläche des oberen EZG; demgegenüber liegt dieser Anteil im unteren EZG bei "nur" 47% der Gesamtfläche des unteren EZG). Abschätzungen haben ergeben, dass jährlich in Abhängigkeit vom

Stickstoffgehalt etwa 777 – 1.851 t NO $_3$ -N auf die landwirtschaftlichen Flächen im oberenEinzugsgebiet ausgebracht werden. Dabei wurde ein Ammoniumgehalt von 3,5 - 5 kg/m³ in Schweinegülle berücksichtigt (LANDWIRTSCHAFTSKAMMER NRW, 2020) und eine Gülleausbringung von etwa 3 - 5 L/m²/a berücksichtigt (VREDENER BAUERNFAMILIEN, 2021). Es wurde angenommen, dass das Ammonium im Boden vollständig zu Nitrat umgesetzt wird. Die Ackerflächen im oberen EZG betragen insgesamt 74.031.811 m²= 74,03 km² (GEOLOGISCHER DIENST NRW, 2021).

Mit diesen Annahmen ergibt sich ein Bereich für eine ausgebrachte Stickstofffracht im oberen EZG:

Ausbringung N: Min: $3.5 \text{ kg m}^{-3} \times 3 \text{ L m}^{-2} \text{ a}^{-1} = 10.5 \text{ g m}^{-2} \text{ a}^{-1}$ (NH4-N = NO3-N) Max: $5 \text{ kg m}^{-3} \times 5 \text{ L m}^{-2} \text{ a}^{-1} = 25 \text{ g m}^{-2} \text{ a}^{-1}$

NO3-N für das obere EZG: Min: $10.5 \text{ g m}^{-2} \text{ a}^{-1} \text{ x } 74.031.811 \text{ m}^2 = 777 \text{ t a}^{-1}$

Max: $25 \text{ g m}^{-2} \text{ a}^{-1} \text{ x } 74.031.811 \text{ m}^2 = 1.851 \text{ t a}^{-1}$

NO3 für das obere EZG: Min: $10.5 \text{ g m}^{-2} \text{ a}^{-1} \text{ x } 74.031.811 \text{ m}^2 \text{ x } 4.43 = 3.442 \text{ t a}^{-1}$

Max: $25 \text{ g m}^{-2} \text{ a}^{-1} \text{ x } 74.031.811 \text{ m}^2 \text{ x } 4,43 = 8.200 \text{ t a}^{-1}$

Es ist davon auszugehen, dass ein Großteil des ausgebrachten Nitrat-Stickstoffs auf dem Feld umgesetzt wird. Dennoch verbleibt ein Anteil von etwa 5 - 20% NO₃-N, der im Oberflächenwasser der Münsterschen Aa am Ende des oberen EZG nachweisbar ist. Für die Herkunftkommen mit größerer Wahrscheinlichkeit landwirtschaftliche Einträge und zusätzlich Einträge aus dezentralen Kläranlagen in die Münstersche Aa in Frage. Eine Abschätzung des Eintrags von Nitrat-Stickstoff aus dezentralen Kläranlagen ist durch die vorhandene Datenlage nicht möglich.

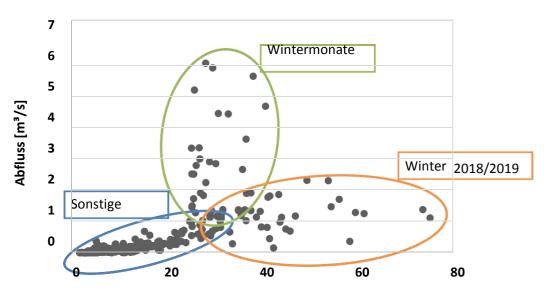


Abbildung 12: Abhängigkeit der Nitratkonzentration vom Abfluss im oberen EZG (Nov. 2015 – Oct. 2020)

Die Witterung spielt eine große Rolle für die resultierenden Konzentrationen in der Münsterschen Aa. Betrachtet man die Nitratkonzentration am Probensammler für das obere EZG aufgetragen gegen den Abfluss (Abbildung 12), wird deutlich, dass drei Bereiche unterschieden werden können. Der erste Bereich (blau) zeigt, dass bei niedrigen Abflüssen (<1 m³/s) die Nitratkonzentration ebenfalls niedrig ist (bis ca. 25 mg/L, vmtl. dominiert durch Kläranlagenablauf). Der zweite Bereich (grün) zeigt, dass sehr hohe Abflüsse von 2 - 6 m³/s zu einem mäßigen Anstieg der Nitratkonzentration führt (vmtl. starke Verdünnung), die im Bereich zwischen 25 und 40 mg/L liegt. Im dritten Bereich (orange)hingegen sind trotz eines nur mäßigen Abflusses von 1 bis 2 m³/s sehr hohe Nitratkonzentrationen bis 74 mg/L gemessen worden.

Betrachtet man die Zeitpunkte, an denen die Konzentrationen aus dem orangen und grünen Bereich gemessen wurden, fallen deutliche Unterschiede auf. So stammen die Proben aus dem orangefarbenen Bereich, in dem die höchsten Nitratkonzentrationen gemessen wurden aus Wochenim Winter 2018/2019 bzw. aus dem Dezember 2019. Die Sommer 2018 und 2019 waren heiß und trocken und auch die mäßigen Niederschläge im Winter 2018/2019 konnten die Wasservorräte im EZG nicht auffüllen. Im Gegensatz dazu stammen die Proben im grünen Bereich ebenfalls größtenteils aus den Wintermonaten (Ausnahme Juni 2016), jedoch waren hier die Winter wesentlich niederschlagsreicher und folgten nicht auf einen Extremsommer, wie 2018. Im Hinblick auf klimatische Veränderungen, durch die mit einem verstärkten Auftreten von Dürreperioden zu rechnen ist, stellt die Entwicklung der Nitratkonzentration möglicherweise zusätzlich zur bestehenden Problematik ein noch größeres Problem für die Zukunft dar.

Am Sammler im unteren EZG liegt die mittlere Nitratkonzentration im Jahresverlauf bei 13,2 mg/L und ist damit etwa 25% geringer als die des oberen EZG, was unter anderem auf den etwas geringeren Anteil landwirtschaftlich genutzter Flächen (38% im oberen EZG gegenüber 27% im unteren EZG (jeweils bezogen auf das gesamte EZG)) zurückgeführt werden kann. Die Zusammenhänge zwischen dem Abfluss und den Nitratkonzentrationen bleiben jedoch auch hier wieim oberen EZG bestehen.

Die Ergebnisse der Abschätzung werden auch durch die extern beauftragten δ 180- und δ 15N-Isotopenanalysen der Wasserproben von Kläranlagenabläufen (n = 3), eines Ackerbodenextraktes und von Flusswasser (n = 3) bestätigt. Die Ergebnisse sind in Abbildung 13 dargestellt. Betrachtet man die Nitrat-Konzentrationen (im Kasten oben rechts dargestellt; 1 Niedrigwasser, 2 Hochwasser, 3 Mittlerer Abfluss), führen niedrige Abflüsse zu niedrigen Nitratkonzentrationen im Gewässer und im Kläranlagenabfluss, während ein hoher Abfluss zu höheren Konzentrationen führt, insbesondere in der Münsterschen Aa. Bemerkenswert ist, dass die Nitratkonzentrationen am Kläranlagenauslass niedriger als die Konzentrationen im Fluss sind. Im Gegensatz dazu ist die Nitratkonzentrationen aus dem simulierten und dotierten Ackerboden (157 mg/L) signifikant höher als die resultierenden Konzentrationen im Fluss (31,1 mg/L bei hohem Abfluss und 3,2 mg/L bei niedrigem Abfluss). Die δ 180und δ15N-Signaturen für die gemessenen Proben liegen zwischen 2,4 und 8,8‰ bzw. 6,2-42,9‰. Die Ergebnisse der Isotopenuntersuchung legen einen erheblichen Eintrag von Nitrat durch landwirtschaftliche Praktiken nahe. Die Isotopenmuster der Proben deuten nicht auf den Einsatz von chemischen Düngemitteln im oberen Einzugsgebiet, gemäß der Klassifizierung der Nitratisotope von KENDALL ET AL. (2007), hin. Auch die atmosphärische Deposition scheint keine Rolle für den Nitrateintrag in die Münstersche Aa zu spielen. Wie erwartet, plottet der Bodenextrakt im Bereich des Bodennitrats aus der Nitrifikation. Proben aus dem Fluss, die bei hohem Abfluss entnommen wurden plotten in der Nähe der Gülle-/Bodenproben und lassen den Schluss zu, dass das gemessene Nitrat am Sammler Roxel hauptsächlich aus Gülle aus der Landwirtschaft stammt. Im Gegensatz dazu plottet die Probe aus der Kläranlage bei geringem Abfluss am weitesten von der Gülle-/Bodenprobe entfernt. Dies deutet darauf hin, dass Nitrat aus menschlichen Abwässern isotopisch von Nitrat aus tierischen Abwässern unterschieden werden kann. Die Proben aus der Kläranlage und dem Fluss (R2 und W2) vom 29.01.2021 bei einem hohen Wasserstand (138,6 cm) weisen niedrigere δ 15N-Werte auf, als die Proben (R3 und W3) vom 12.02.2021 bei einem mittleren Wasserstand (57 cm). Dies zeigt, dass ein hoher Abfluss und die Probenahme kurz nach den Regenfällen die Stickstoffsignatur der Flusswasserprobe in Richtung der Signatur der Bodenprobe verschiebt, da oberflächlicher Abfluss von landwirtschaftlichen Flächen die Hauptstickstoffquelle nach Niederschlägen ist. Der Einfluss der Kläranlage nimmt mit sinkendem Wasserstand und damit abnehmendem Abfluss zu, was sich durch den zunehmenden Anteil an geklärtem Abwasser im Fluss erklärt. Die Stickstoffisotopensignatur des Kläranlagenauslasses ist jedoch ebenfalls nicht stabil und variiert je nach den hydrologischen Bedingungen, da der δ15N nach Niederschlägen ebenfalls abnimmt. Ein Grund dafür könnte die kombinierte Abwassereinleitung in Havixbeck sein. Nach Niederschlagsereignissen wird auch städtischer Oberflächenabfluss in der Kläranlage mitbehandelt, wodurch es zu einem erhöhten Durchfluss und resultierend verkürzten Verweilzeiten für Denitrifikationsprozesse kommt. Dies wird durch den dann geringeren Anteil von $\delta180$ und $\delta15N$, sowie eine steigende Nitratkonzentrationen deutlich.

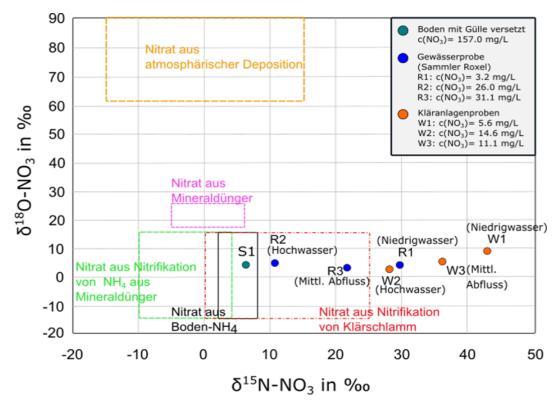


Abbildung 13: Ergebnisse der Analyse der Nitratisotope. Das Diagramm basiert auf der Einteilung der Klassen der Nitratherkunft nach Kendall et al. (2007)

Gruppe 2: Mit zunehmendem Abfluss sinkende Konzentrationen

Im Gegensatz zu Nitrat tritt das abwasserbürtige Antiepileptikum Carbamazepin vor allem in den trockenen Sommermonaten in hohen Konzentrationen im Gewässer auf und überschreitet dabei auch die vorgeschlagene Umweltqualitätsnorm von 500 ng/L im Gewässer (WENZEL ET AL., 2014) (Abbildung 15). Carbamazepin wird in kommunalen Kläranlagen nur schlecht abgebaut (<10 %) und kann daher als Marker für kommunales Abwasser gesehen werden (JEKEL UND DOTT, 2013). Für den Standort des Probensammlers im oberen EZG ist die Hauptquelle für Carbamazepin die Kläranlage Havixbeck. Allerdings tragen vermutlich auch viele punktuelle Einleitungen aus privaten Kleinkläranlagen im oberen EZG zum Eintrag von abwasserbürtigen Stoffen bei.

Aus dem jahreszeitlichen Verlauf lassen sich erhöhte Konzentrationen bei niedrigerem Abfluss ableiten. Da Carbamazepin kein saisonal verwendetes Arzneimittel darstellt und der Abfluss der Kläranlagen keinen großen Schwankungen unterliegt (HKA Münster 2020), kann die Abnahme der Konzentration bei hohen Abflüssen als Verdünnungseffekt eingeordnet werden. Ein ähnliches Verhalten der Konzentration im Zusammenhang mit dem Abfluss lässt sich auch für andere Arzneimittel, wie beispielsweise Sulfamethoxazol, Metoprolol und Phenazon oder den Ionen Chlorid, Natrium und Kalium beobachten. Diese Stoffe werden für die Münstersche Aa auch aufgrund der Ergebnisse der Stichtagsprobenahmen ebenfalls als abwasserbürtig eingestuft (Abbildung 14).

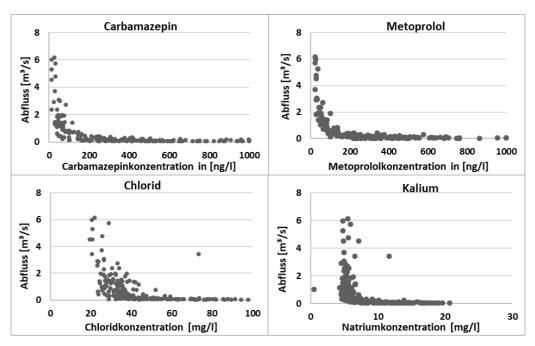


Abbildung 14: Abhängigkeit der Konzentration vom Abfluss für Carbamazepin, Metoprolol, Kalium und Chlorid in den Wochenmischproben am automatisierten Probensammler des oberen EZG von Nov. 2015 bis Okt. 2020 (Ionen)bzw. Nov. 2016 bis Okt. 2020 (org. Spurenstoffe).

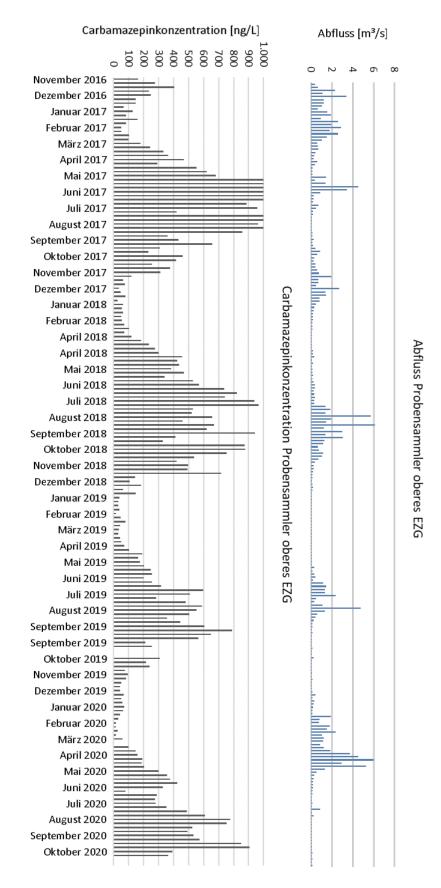


Abbildung 15: Jahreszeitlicher Verlauf der Carbamazepinkonzentration am Probesammler des oberen EZG in Abhängigkeit vom Abfluss

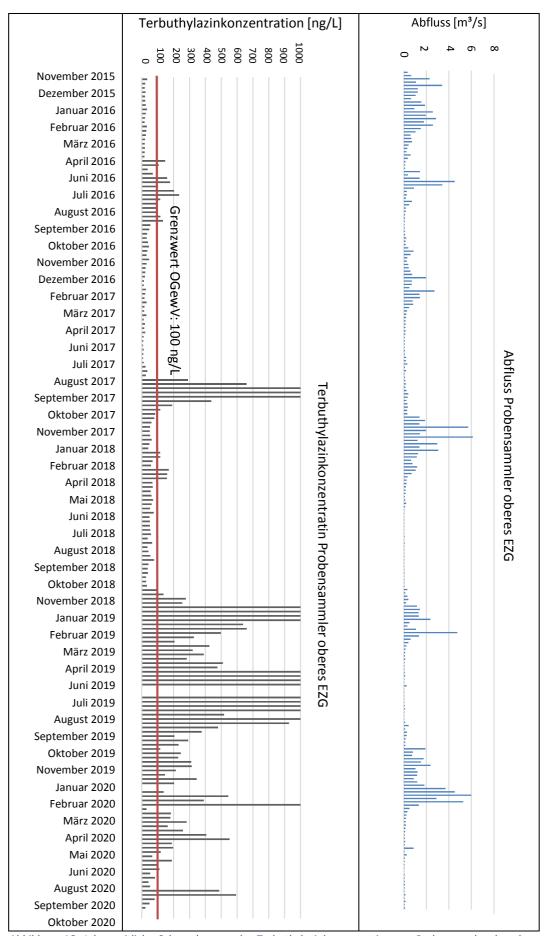


Abbildung 16: Jahreszeitliche Schwankungen der Terbuthylazinkonzentration am Probesammler des oberen EZG in Abhängigkeit vom Abfluss

--

Gruppe 3: Kein Zusammenhang der Konzentration mit Abfluss erkennbar

Als dritte Gruppe lassen sich Stoffe beschreiben, deren Auftreten im Gewässer nicht maßgeblich vom Abflussregime beeinflusst wird. Dazu gehören vor allem Pflanzenschutzmittel, die in verschiedenen Wachstumsstadien der Pflanze ausgebracht werden, und insbesondere zu Anwendungszeiten nachweisbar sind. Als Beispiel dieser Gruppe ist Terbuthylazin zu nennen (Abbildung 16).

Das Maisherbizid wird von April bis Juli verwendet und zu diesen Zeiten in Konzentrationen über dem Grenzwert von 100 ng/L (OGEWV, 2016) detektiert. Konzentrationsschwankungen zwischen einzelnen Jahren, wie z. B. zwischen 2017 und 2018, lassen sich ggf. auf die unterschiedliche Nutzungder Felder zurückführen. Oft werden Feldfrüchte im Wechsel angebaut oder auch andere Stoffe eingesetzt.

Ein ähnliches Verhalten von Terbuthylazin wurde auch bei Messungen in der nicht weit entfernten Stever (LANDWIRTSCHAFTSKAMMER, 2018) festgestellt. Hohe Konzentrationen traten ebenfalls im Juni 2018 auf, während im Jahr 2017 deutliche geringere Konzentrationen im Ausbringzeitraum verzeichnet werden konnten.

Auffällig sind die erhöhten Konzentrationen im Winter 2019/2020, die deutlich nach dem Verwendungszeitraum von Terbuthylazin auftreten. Möglicherweise hängt auch dieser Konzentrationsanstieg mit den trockenen Bedingungen in den vorangegangenen Sommern und dem Winter 2018/2019 zusammen. Weitere Stoffe dieser Kategorie sind zum Beispiel Mecoprop-P und MCPA.

3.1.4 Event-orientierte Beprobungen: Nach starkem Niederschlag oder längerer Trockenzeit

Über die Stichtagsprobenahmen im gesamten EZG hinaus wurden Stichtagsprobenahmen zu besonders bedeutsamen Zeitpunkten am Standort des Sammlers am oberen EZG durchgeführt, um besondere Witterungsereignisse (Starkregen, Schneefall etc.) zu studieren. Die Zeitpunkte der Probenahmen sowie der Probenahmebedingungen sind in Tabelle 3 dargestellt.

Datum		villerung	wasserstand
			(Tagesmittelwert)[cm]
21.09.2018	13:15	Kurz nach Niederschlag (7 L/m²)	6,5
24.09.2018	11:20	Niederschlag am Vortag (13 L/m²)	16,2
03.12.2018	09:55	Niederschlag am Vortag (20 L/m²)	22,3
28.01.2019	10:00	Nach Niederschlägen in den Vortagen (ca. 20 L/m²)	92,0
04.06.2019	11:20	Nach Gewitter mit mäßigem Niederschlag (6 L/m²)	24,4
12.06.2019	13:30	Nach 2 - 3 Stunden mäßigem Regen (6 L/m²)	19,6
11.07.2019	18:45	Ca. 30 Minuten nach Gewitter mit Starkregen (23 L/m²)	12,4
12.07.2019	09:15	Mäßige Regenfälle (12 L/m²)	36,8
12.08.2019	08:30	Nach etwa einer Woche ohne Niederschlag	6,9
30.09.2019	9:00	Niederschlag in der Nacht (16 L/m²)	33,5
19.11.2019	8:45	Niederschlag am Vortag (32 L/m²)	145,8
10.02.2020	14:50	Nach Sturm und Regen in der Nacht (25 L/m²)	167,8
25.02.2020	9:40	Niederschläge in den Vortagen (>20 L/m²)	171,8
30.03.2020	13:00	Nach längerer Trockenperiode	24,1
02.07.2020	09:00	Regen am Vortag (30 L/m²)	47,0
11.09.2020	15:00	Nach etwa einer Woche ohne Niederschlag	7,7

Ausgewählte Ergebnisse der chemischen Untersuchungen sind in Tabelle 4 aufgelistet und farblich in den Kontext der vorherigen Ergebnisse eingeordnet: Die grün unterlegten Werte stellen Zeitpunkte dar, zu denen die Konzentration des Parameters der Stichprobe unter der Konzentration der entsprechenden Mischprobe liegt. Mit rot sind Messwerte gekennzeichnet, bei denen die Konzentration der Stichtagsprobe größer ist als die der Wochenmischprobe. Werte ohne Schattierung weichen ± 10% von der Wochenmischprobenkonzentration ab und werden deshalb als gleich angesehen. Es liegen nicht füralle beprobten Zeitpunkte Ergebnisse in allen Parameterkategorien (Vor-

Ort-Parameter, Anionen, Kationen, Spurenstoffe) vor.

Tabelle 4: Ausgewählte Ergebnisse der Stichproben am Probensammler des oberen EZG; Chlorid (Cl), Nitrat (NO3), Kalium (K), Calcium (Ca), Carbamazepin (CMZ), Metoprolol (MTP), Terbuthylazin (TBZ), 2-Methyl-4- chlorphenoxyessigsäure (MCPA), unter Nachweisgrenze (<LOQ); farbliche Markierungen siehe Text

Datum	Cl	NO ₃	К	Ca	CMZ	MTP	TBZ	MCPA
	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[ng/L]	[ng/L]	[ng/L]	[ng/L]
21.09.2018	90,9	0,7	18,1	87,8	< LOD	41,6	78,8	< LOD
24.09.2018	56,4	4,5	11,1	65,8				
03.12.2018	48,7	7,6	9,6	74,6	372,1	>1.000	6< LOD	< LOD
28.01.2019	38,0	58,0	4,7	122,7				
04.06.2019	31,9	5,3	6,9	83,6	167,9	143,9	987,4	57,1
12.06.2019	59,2	5,3	11,9	115,5	411,6	588,4	> 1.000	76,8
11.07.2019	7,3	4,1			< LOQ	20,1	245,9	< LOQ
12.07.2019	46,5	6,4	14,0	79,2	275,9	393,0	> 1.000	138,8
12.08.2019					432,4	293,3	333,6	47,1
30.09.2019	15,4	1,5	7,9	56,3	257,5	350,1	> 1.000	< LOD
19.11.2019	17,8	24,0	5,7	85,4	58,1	66,8	> 1.000	< LOD
10.02.2020	16,7	14,9	5,4	88,6	< LOD	28,7	365,6	< LOD
25.02.2020	15,3	14,7	4,7	96,6	< LOD	19,4	279,9	< LOD
30.03.2020	33,7	21,1	5,1	148,5	103,3	200,3	100,4	< LOD

Anhand der Stichproben wird deutlich, dass die gemessenen Konzentrationen in den Stichproben zum größten Teil nicht mit denen der Wochenmischproben übereinstimmen (Anhang 12 und 14). Dabei ist keine Regelmäßigkeit für einzelne Parameter erkennbar. Es fällt allerdings auf, dass die Witterung zur Probenahme möglicherweise eine Rolle spielt. Dabei ist besonders die Stichprobe vom 11. Juli 2019 hervorzuheben, bei der die Konzentrationen der Wochenmischprobe höher als die Konzentration der Stichproben sind. Das kurze, kräftige Niederschlagsereignis sorgte vermutlich während der sonst trockenen Phase für eine kurzfristige Verdünnung durch Niederschlag. Diese kurzfristigen Konzentrationsschwankungen können durch die Wochenmischproben nicht aufgelöst werden.

Die Ergebnisse zeigen deutlich, dass das Gewässer der Münsterschen Aa vielen verschiedenen Stressoren ausgesetzt ist. Diese sind nicht nur auf die heterogene Landnutzung im Einzugsgebiet, sondern auch auf klimatische und geologische Begebenheiten zurückzuführen. So zeigen sich im Jahresverlauf starke Schwankungen der gemessenen Ionen- und Stoffkonzentrationen. Auch wenn die gemessenen Parameterkonzentrationen in Bereichen liegen, die nicht zu einer Überschreitung der Grenzwerte der Oberflächengewässerverordnung führen, ist die Vielfalt der Stressoren und deren Auftreten zu verschiedenen Jahreszeiten ein wichtiger Faktor im Hinblick auf die Bewertung der ökologischen Bedingungen im Einzugsgebiet. Als wichtige Eintragspfade werden besonders die Gülleausbringung, die beiden Kläranlagen als Punktquellen, sowie die möglichen diffusen Einträge aus Kleinkläranlagen erachtet. Die Kläranlagen liefern vor allem in den Sommermonaten mit niedrigem Abfluss erhöhteKonzentrationen verschiedener Arzneimittel und deren Abbauprodukte, für die bisher keine Grenzwerte in Oberflächengewässern gelten. Der Einfluss durch die Landwirtschaft wird besonders an den hohen Nitratkonzentrationen im Winter deutlich und kann ebenfalls durch die erhöhten Terbuthylazinkonzentrationen vor allem in den Sommermonaten bestätigt werden.

3.2 Untersuchung zum Einfluss der Gewässerrandstreifen

Die ersten Probengefäße wurden Ende 2019 installiert und getestet. Im Laufe des Frühjahrs 2020 wurde das Setup optimiert und erste Beprobungen waren geplant. Diese konnten jedoch aufgrund verschiedener Gründe zunächst nicht stattfinden. Durch den Corona-Lockdown waren besonders im März und April 2020 Einschränkungen für die Ausfahrt und die Tätigkeit im Labor gegeben, sodass die Beprobungen dort nicht fortgeführt werden konnten. Im Sommer scheiterten Probenahmen vorallem am mangelnden Niederschlag, da die zuvor ermittelten erforderlichen 20 L/m² in möglichst kurzer Zeit entweder nicht erreicht wurden oder aufgrund von unzureichenden Wettervorhersagennicht effektiv zeitlich abgepasst werden konnten.

Ende Januar 2021 konnte schließlich erstmals eine ausreichend große Menge Wasser in den Probenahmegefäßen gesammelt werden. Dabei war die Menge in den Gefäßen an der Böschung ohne Randstreifen größer als auf der gegenüberliegenden Seite mit Randstreifen. An beiden Gewässerseiten der Teststrecke kam es jedoch leider unerwartet teilweise zur Flutung der Gefäße bei dem stark erhöhten Wasserstand des Meckelbachs. Daten zu den detaillierten Wasserstandsschwankungen an der Teststrecke in den vergangenen Jahren lagen nicht vor und die Einschätzungen des Grundstückseigentümers wurden deutlich übertroffen. Um eine Flutung bei zukünftigen Beprobungen auszuschließen, werden die Gefäße zukünftig weiter oberhalb an der Böschungskante platziert (Abbildung 17).

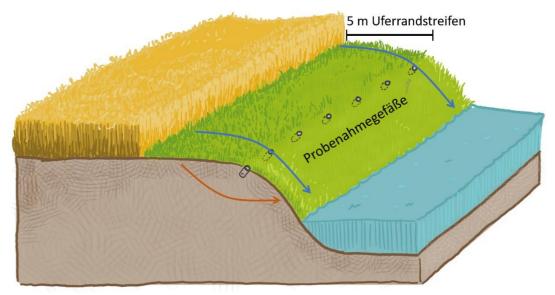


Abbildung 17: Skizze des Probenahme-Setups. Der beprobte Abflusspfad ist in blau dargestellt. Der vermutete, nicht beprobte Abflusspfad ist in orange dargestellt

Nach den Beobachtungen am spezifischen Standort der errichteten Teststrecke können Einschätzungen zur Wirksamkeit der gewählten Probenahmemethode getroffen werden: Durch das geringe Gefälle des oberen Teils des Gewässerrandstreifens im Bereich von der Ackerkantebis zur Böschungskante wird oberflächlicher Abfluss vom Feld zum Gewässer trotz der geringen Durchlässigkeiten nur bei sehr starken Niederschlägen erreicht (Abbildung 17, blaue Linien). Niederschlagswasser steht meist auf dem Feld und dem Randstreifen und versickert bzw. verdunstet. Beobachtungen lassen vermuten, dass das Wasser an der Probenahmestelle unterirdisch abfließt und nach einer Bodenpassage das Gewässer erreicht. Des Weiteren ergibt sich aus den Untersuchungen, dass dieses Ziel im Rahmen des hier betrachteten Projekt-Aspekts mit der verbleibenden Projektlaufzeit und des Projektumfangs nicht zufriedenstellend erreicht werden kann.

Um ganzheitliche Aussagen über die Effektivität von Uferrandstreifen treffen zu können, werden folgende Punkte vorgeschlagen, die für zukünftige Projekte beachtet werden sollten:

- Gute Vergleichbarkeit zwischen den beiden Szenarien "Mit" und "Ohne" Randstreifen mussgegeben sein z.B. durch Vorher-Nachher Betrachtungen in umfassenden Zeiträumen
- Aufgrund lokaler Heterogenität ist eine höhere Anzahl von Teststrecken-Standorten ist für allgemein gültige Schlussfolgerungen erforderlich
- Oberflächlicher UND unterirdischer Abfluss mit Anpassung der Probenahme an die örtlichen Gegebenheiten müssen beprobt werden
- Flächen mit unterschiedlichen Voraussetzungen und Bewirtschaftungsformen solltenbetrachtet

und beprobt werden

- Unterschiedliche Formen von Schutzstreifen (und ggf. Durchlässigkeiten) solltenberücksichtigt werden
- Erhöhte Anzahl von Probenahmen bei unterschiedlichen Witterungsbedingungen(längerfristig durchgeführte Untersuchungen)

3.3 In welchem Zustand befinden sich die biologischen Qualitätskomponenten im Einzugsgebiet?

3.3.1 Fische

Im EZG der Münsterschen Aa herrschen drei Fischgewässertypen (FiGt) vor. Im Oberlauf handelt es sich um FiGt_05 und _06 und im Unterlauf um FiGt_25. Über das gesamte EZG und alle Befischungen, konnten alle Leitarten für diese drei FiGt gefangen werden. Nichtsdestotrotz befinden sich die Fischpopulationen im EZG in einem mäßigen bis schlechten Zustand, lediglich mit einigen wenigen Ausnahmen von guten Bewertungen. Keine Probestelle konnte mit "sehr gut" bewertet werden (Tabelle 5).

Eine räumliche Betrachtung der Befischungsergebnisse zeigt kein besonderes Muster und auch keinen Trend in der Münsterschen Aa selbst. Der Oberlauf (Probestellen Aa1-Aa10) sowie der Unterlauf (Probestellen Aa12-Aa16) sind von mäßigen und unbefriedigenden Bewertungen geprägt. Die vereinzelten schlechten sowie guten Probestellen stechen heraus (Aa6, Aa10, Aa14 und Aa16). Ein Trend von einem Oberlauf mit guten oder gar sehr guten Ergebnissen hin zu einem Unterlauf mit schlechteren Ergebnissen aufgrund von anthropogenen Einflüssen entlang des Flusslaufes lässt sich nicht feststellen. Ebenso wenig zeigen die Fischzönosen Unterschiede zwischen den landwirtschaftlichen Einflüssen im Oberlauf und den urbanen Einflüssen im Unterlauf auf. Hinzu kommt das Stadtgebiet der Stadt Münster, welches die Münstersche Aa durchfließt. Es gilt als Degradationstrahlweg, da der Verbau sehr stark ausgeprägt ist und es kaum Habitatmöglichkeiten bietet. Lediglich eine Probestelle (Aa11) befindet sich hier, direkt hinter dem Aasee, welche unbefriedigende und schlechte Befischungsergebnisse aufweist und somit diese Theorie stützt.

Betrachtet man jedoch die Nebenflüsse der Münsterschen Aa, so findet man mehr gute Bewertungen. Besonders der Kinderbach (KB) und der Schlautbach (SB) weißen gute Bewertungen der Fischzönosen auf. Während der SB im Oberlauf befindlich ist, fließt der KB erst im Unterlauf in die Münstersche Aa. Gleichzeitig haben der Ober- sowie der Unterlauf auch Nebenflüsse, welche lediglich im mäßigen oder unbefriedigenden Bereich sind (Meckelbach und Wöstebach). Obwohl sich keine Tendenz für die Nebenflüsse ableiten lässt, zeigt dies jedoch ihr Potenzial besonders bzgl. der Strahlwirkung auf.

Eine zeitliche Betrachtung der Befischungsergebnisse über die Jahre 2018 bis 2020 hinweg kommt zu einem ähnlichen Ergebnis (Abbildung 18). Alle drei Jahre waren von starker Hitze und Trockenheit betroffen. Nichtsdestotrotz sticht das Beprobungsjahr 2018 mit keiner einzigen guten Bewertung hervor. In Tabelle 5wird auch ersichtlich, dass gerade im ersten Jahr mehr Probestellen trockengefallen sind. Obwohl trocken gefallene und daher nicht befischte Strecke nicht mit einer Bewertung in die Ergebnisse einfließen, sollten sie trotzdem wahrgenommen werden. Ein trockengefallener Abschnitt bietet den Fischen keinen Lebensraum und unterbindet eine mögliche Strahlwirkung wie sie in dem Strahlwirkungs- und Trittsteinkonzept gewünscht ist. Dementsprechend ist das wiederkehrende Trockenfallen vor allem im Oberlauf der Münsterschen Aa sowie ihrer Nebenflüsse ein alarmierendes Zeichen und sollte in weiteren Planung Berücksichtigung finden. Ein leichter Anstieg bei den Prozentwerten der mit gut verzeichneten Bewertungen innerhalb der drei Beprobungsjahre lässt sich ebobachten. Nichtsdestotrotz lässt sich keine generelle Tendenz zu einer Verbesserung der Fischzönosen im gesamten EZG erkennen, da auch die schlechten und unbefriedigenden Ergebnisse je nach Jahr zunehmen.

Tabelle 5: Befischungergebnisse der Jahre 2018 bis 2021. Die Probestellen sind in Teilproben unterteilt, wenn ein Befischungsabschnitt stark variierte (ungepoolt). Alle Teilproben sind zuzüglich gepoolt ausgewertet worden (gepoolt). Für die weiterführende Diskussion, wurden die gepoolten Werte verwendet. * Probestellen mit Renaturierung, vor oder während des Projektzeitraumes. ** Bewertung unter Vorbehalt. *** Bewertung nach FiGt 06 (Bewertung nach FiGt 05 und 25 unbefriedigend).

Probestelle		2018		2019		2020	2021
Propestelle	ungepoolt	gepoolt	ungepoolt	gepoolt	ungepoolt	gepoolt	gepoolt
Aa1	Trocken gefallen		Trocken gefallen				
Aa2	Trocken gefallen		Trocken gefallen				
Aa3	Trocken gefallen	Trocken gefallen					
Aa4.1*	unbefriedigend		schlecht		unbefriedigend		
Aa4.2*	unbefriedigend	unbefriedigend	schlecht	unbefriedigend	unbefriedigend	unbefriedigend	unbefriedigend
Aa4.3*	mäßig		unbefriedigend		unbefriedigend		
Aa5	Trocken gefallen		Trocken gefallen				
Aa6.1	mäßig	" 0: -	mäßig	" O' -	mäßig		
Aa6.2	unbefriedigend	mäßig	schlecht	mäßig	mäßig	gut	
Aa7.1	unbefriedigend	1 () 1	unbefriedigend		unbefriedigend		
Aa7.2	unbefriedigend	unbefriedigend	mäßig	mäßig	mäßig	mäßig	
Aa8.1	Zu kalt	-	unbefriedigend	" 0 : -			
Aa8.2	Zu kalt		mäßig	mäßig			
Aa9.1	Zu kalt		mäßig	mäßig			
Aa9.2			mäßig				
Aa10			schlecht				
Aa11*	schlecht	schlecht					
Aa12*	Laufende Renaturie	rungsmaßnahmen		mäßig			
Aa13	unbefriedigend		mäßig			mäßig	
Aa14.1*	unbefriedigend		unbefriedigend		mäßig		
Aa14.2*	mäßig	mäßig	mäßig	mäßig	:: 0: -	gut	
Aa14.3*	mäßig		unbefriedigend		mäßig		
Aa15.1			schlecht	= O:			
Aa15.2			mäßig	mäßig			
Aa16.1	:: 0:-		unbefriedigend	a a la la a la t		a a la la a la A	
Aa16.2	mäßig		schlecht	schlecht		schlecht	
AP4 Diepenbrock*	Keine Befischungsst	recke		·			
AP4 Egger*	Keine Befischungsst	recke					
AP4 Niehoff*	Keine Befischungsst	Keine Befischungsstrecke					
KB1	Trocken gefallen	<u> </u>					
KB2.1	Trocken gefallen		Trocken gefallen gut				
KB2.2	Trocken gefallen		unbefriedigend	gut			
KB3	Zu kalt		gut				
MB1	Trocken gefallen		Trocken gefallen				

Tabelle 5: Fortsetzung

Probestelle		2018		2019		2020	
	ungepoolt	gepoolt	ungepoolt	gepoolt	ungepoolt	gepoolt	gepoolt
MB2	mäßig			mäßig		unbefriedigend	
NB	Trocken gefallen	Trocken gefallen					
SB1	unbefriedigend	unbefriedigend		schlecht		unbefriedigend	
SB2	mäßig	mäßig		gut		mäßig	
SB3.1*	unbefriedigend	mäßia	mäßig	mä@ia	schlecht	mä@ia	
SB3.2*	unbefriedigend	mäßig	mäßig mäßig	gut	mäßig		
SB4	mäßig	mäßig		mäßig			
WB	Zu kalt						

Ähnlich verhält es sich mit den Gewässerabschnitten, welche in irgendeiner Weise aufgewertet wurden. Eine Verbesserung der Fischzönosen innerhalb des Projektzeitraumes ist lediglich bei der Probestelle Aa14 zu verzeichnen. Diese Renaturierung ist allerdings bereits vor dem Projektbeginn umgesetzt worden und die Arten hatten Zeit diesen Bereich wieder zu besiedeln. Die größere Umgestaltungsmaßnahme nahe Hohenholte, welche von dem Projekt mit vorher-nachher-Beprobungen untersucht wurde, weist keinerlei Verbesserung auf. Hierbei muss jedoch angemerkt werden, dass die nachher-Beprobung nur einige wenige Monate nach Fertigstellung der Umgestaltung erfolgte. Ein ausreichender Zeitpunkt für eine mögliche Ansiedlung der Arten scheint damit noch nicht gegeben. Um einen Effekt der Umgestaltung zu verzeichnen, ist ein weiteres Monitoring der Stelle erforderlich.

Ähnlich verhält es sich mit der Renaturierung an der Kanalstraße (Aa12). Hier liegen keine vorher-Beprobungen vor, da die Umgestaltung zu Projektbeging bereits aktiv war. Die Bewertung im darauf folgenden Jahr fiel mäßig aus, eine Verbesserung innerhalb der letzten Jahren ist allerdings nicht auszuschließen. Auch hier sollte ein Monitoring fortgeführt werden.

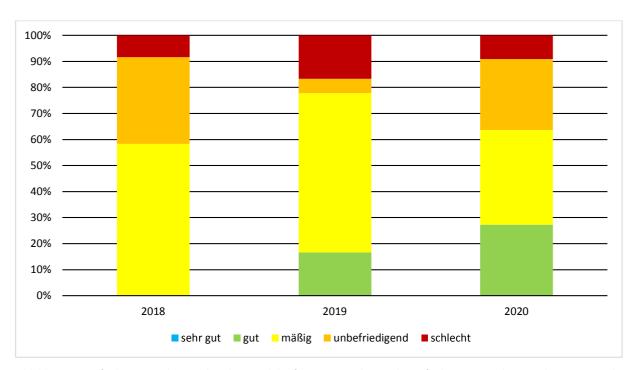


Abbildung 18: Befischungsergebnisse über die Projektlaufzeit. Die Ergebnisse der Befischungen werden anteilig in % pro Jahr dargestellt.

3.3.2 Makrozoobenthos

Die Ergebnisse der MZB-Untersuchung ergeben ein ähnliches Bild wie die Befischungen. Mäßige und unbefriedigende Ergebnisse dominieren den Zustand der Wirbellosen im EZG der Münsterschen. Ebenso sind schlechte Ergebnisse gefunden worden, doch im Gegensatz zu den Fischzönosen weist das MZB vermehrt gute und sogar eine sehr gute Bewertung auf (Tabelle 6).

Tabelle 6: Makrozoobenthosergebnisse der Jahre 2019 bis 2022, ausgewertet mit PERLODES. * Probestellen mit Renaturierung, vor oder während des Projektzeitraumes ** Beprobung des nicht alten Gewässerlaufs direkt unterhalb der Renaturierung. *** Beprobung in dem renaturierten Gewässerlaufs.

Probestelle	2019	2020	2021	2022				
Aa1	gut							
Aa2	Keine MZB-Stelle	Keine MZB-Stelle						
Aa3	Keine MZB-Stelle							
Aa4.1*								
Aa4.2*	mäßig		gut**	mäßig***				
Aa4.3*								
Aa5	unbefriedigend							
Aa6.1								
Aa6.2	mäßig							
Aa7.1	and a fair alternal							
Aa7.2	unbefriedigend							
Aa8.1	h a fait a disa a a d							
Aa8.2	unbefriedigend							
Aa9.1	unh of significant							
Aa9.2	unbefriedigend							
Aa10	mäßig							
Aa11*	Keine MZB-Stelle	•						
Aa12*	schlecht							
Aa13	schlecht							
Aa14.1*								
Aa14.2*	gut							
Aa14.3*								
Aa15.1	h a fait a disa a a d							
Aa15.2	unbefriedigend							
Aa16.1	# O: -							
Aa16.2	mäßig							
AP4 Diepenbrock*		gut						
AP4 Egger*		gut						
AP4 Niehoff*		mäßig						
KB1	mäßig							
KB2.1								
KB2.2	Keine MZB-Stelle							
KB3	unbefriedigend							
MB1	unbefriedigend							
MB2	unbefriedigend							
NB	mäßig							
SB1	sehr gut							
SB2	Keine MZB-Stelle							
SB3.1*	Voinc MAZD Ctall-							
SB3.2*	Keine MZB-Stelle							
SB4	unbefriedigend							
WB	unbefriedigend							

Im Gegensatz zu den Fischen zeigt die räumliche Betrachtung der MZB-Ergebnisse im EZG der Münsterschen Aa einige Auffälligkeiten (Abbildung 19).

Der Oberlauf der Münsterschen Aa (Probestellen Aa1-Aa10) sowie der Unterlauf (Probestellen Aa12-Aa16) sind von mäßigen und unbefriedigenden Bewertungen geprägt. In beiden gibt es je eine gute

Bewertung. Im Oberlauf befindet diese sich nahe der Quelle (Aa1). Die landwirtschaftlichen Einflüsse sind hier noch relativ gering und eine gute Beschattung liegt vor, was die gute Bewertung erklären könnte. Im Unterlauf befindet sich diese an der Probestelle Aa14, welche auch ein gutes Befischungsergebnis in dem Jahr 2020 erreicht hat. Wie bei den Fischen liegt die Vermutung nahe, dass die erfolgte Renaturierung eine positive Wirkung auf die MZB-Zönose gehabt hat. Wenn dem so ist, dann zeigen die Ergebnisse ebenfalls, dass sich das MZB schneller wieder angesiedelt hat als die Fische.

Das Stadtgebiet von Münster wurde nicht beprobt, da aufgrund von durgehendem Verbau und somit fehlenden Habitaten von einer schlechten MZB-Zönose auszugehen ist.

Bei der Betrachtung der Nebenflüsse der Münsterschen Aa sticht der SB heraus. Während die anderen Nebenflüsse selbst in der Quelle lediglich mäßige Ergebnisse aufweisen, zeigt der SB einen klaren Verlauf von der Quelle bis zu seiner Mündung in die Münstersche Aa. Die einzige sehr gute Bewertung der ökologischen Qualitätskomponenten findet sich in der MZB-Bewertung SB1 nahe der Quelle des SB. Von hier an nimmt die Bewertung über gut (AP4 Diepenbrock und Egger) bis mäßig (AP4 Niehoff) und unbefriedigend (SB4) an der Mündung zur Münsterschen Aa ab. Damit erfüllt der SB in einem Großteil seines Verlaufs die Forderungen der WRRL, allerdings lediglich bezogen auf das MZB. Hierbei muss darauf hingewiesen werden, dass es sich bei den Probestellen AP4 Diepenbrock, Egger und Niehoff um kleinere Maßnahmen handelt, welche nach ihrer Implementierung gezielt bzgl. des MZB untersucht wurden. Die Bedeutung dieser Maßnahmen und ihrer guten Bewertung wird in 3.6 detailliert diskutiert.

Eine zeitliche Betrachtung der MZB-Ergebnisse ist lediglich an der Probestelle Aa4 möglich, da eine jährliche Beprobung des MZB nicht vorgesehen war. Hierdurch sollte eine vorher-nachher-Aussage über die Auswirkungen einer größeren Umgestaltung auf das MZB möglich werden. Die Beprobung 2019 dient dabei als vorher-Probe. Im Jahr 2021 wurde eine Probe während der laufenden Umgestaltungsarbeiten genommen. Diese wurde direkt unterhalb des umgestalteten Bereichs im alten Gewässerverlauf genommen. Im Jahr 2022 knapp ein Jahr nach der Fertigstellung der Renaturierung wurde der neue Gewässerverlauf beprobt. Die Ergebnisse zeigen eine mäßige Zönose für vor sowie nach und eine gute Zönose für während der Umgestaltung zeigen. Besonders die gute Zönose während der Bauarbeiten lässt darauf schließen, dass die Störung durch diese eine Verdriftung der Arten zur nächsten ungestörten Stelle bewirkt hat. Eine Akkumulation diese auf kleinem Raum kann zu der zeitweisen guten Bewertung geführt haben. Hingegen ist die Bewertung im frisch renaturierten Abschnitt nicht besser ausgefallen als vorher. Ähnlich wie bei der Befischung dieses Abschnittes kann eine zu frühe Beprobung und damit einhergehend noch nicht vollständige Wiederbesiedlung des Abschnittes der Grund sein. Zzgl. führte die Münstersche Aa aufgrund anhaltendem Niederschlag in den vorangegangenen Tagen vergeleichsweise viel Wasser, was eine Beprobung des MZB erschwert. Eine weiterführendes Monitoring ist also auch für das MZB an dieser Stelle angeraten.

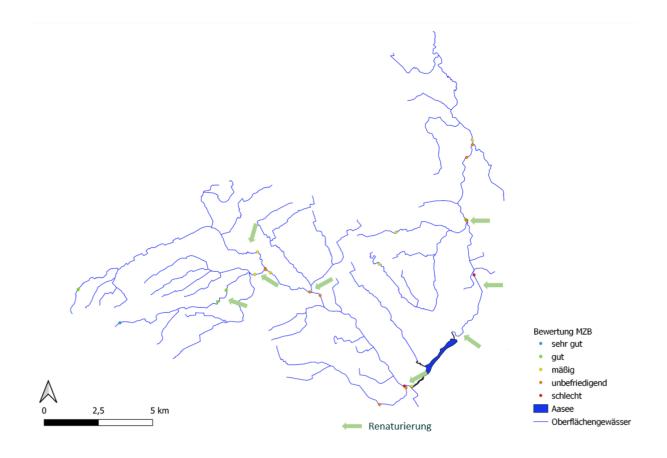


Abbildung 19: Darstellung der MZB-Ergebnisse der Jahre 2019 und 2020 im EZG der Münsterschen Aa.

3.4 Bringt ein zeitlich sowie räumlich höher aufgelöstes Stichprobennetz ein genaueres Bild des Zustandes des EZG?

In Bezug auf die biotischen Bewertungsparameter erscheinen die Monitoringsysteme der WRRL im aktuellen Zuschnitt als nicht ausreichend, um Erfolge oder anhaltende Defizite des ökologischen Zustands nach Gewässerentwicklungsmaßnahmen aufzeigen zu können. Für die Ableitung eines passgenaueren Monitorings zur Darstellung der Trends in der Gewässerentwicklungspraxis wurde ein zeitlich sowie räumlich höher aufgelöstes Stichprobennetz untersucht.

Beim Betrachten der Befischungs- und MZB-Ergebnisse über das EZG und den Projektzeitraum verteilt ergibt sich folgendes Bild bzgl. des Monitorings:

• Ein räumlich höher aufgelöstes Monitoring bringt nicht den gewünschten Effekt

Die räumlich höhere Dichte unserer Beprobungen ergab keine neuen Erkenntnisse bzgl. Strahlursprünge oder potentieller Strahlursprünge. Ebenso waren unsere Ergebnisse der ökologischen Qualitätskomponenten vergleichbar mit jenen des Monitoring (ELWAS o.J.). Da ein räumlich höher aufgelöstes Stichprobennetz auch einen enormen Mehraufwand an Beprobung erfordert und keine weiteren Erkenntnisse erwartbar sind, erscheint eine Ausweitung des Monitorings hier nicht ratsam.

• Ein zeitlich höher aufgelöstes Monitoring kann ein genaueres Bild des EZG zeichnen

Anders verhält es sich mit der zeitlich höheren Auflösung, welche neuen Erkenntnisgewinn verspricht. Das bisherige Monitoring verläuft in einem 4-Jahreszyklus (ELWAS o.J.). Dementsprechend gilt die gleiche ökologische Bewertung eines Abschnittes über 4 Jahre hinweg. Wie in Abbildung 18 jedoch ersichtlich wird, unterliegt das Einzugsgebiet deutlichen Schwankungen was die Befischungsergebnisse anbelangt. Gerade Jahre mit extremen Wetterereignissen wie die Trockenjahre 2018 oder 2019 können das Bild des Fischbestandes stark

verzerren und werden. Für einen genaueren Überblick und einen Ausschluss oder einen Einbezug solch extremer Jahre, ist ein zeitlich höher aufgelöstes Monitoring hilfreich. Besonders mit Betrachtung des Klimawandels sind solche Extremwetterjahre häufiger zu erwarten und sollten im Monitoring mit einbezogen werden.

Ähnlich verhält es sich mit den Tendenzen sowie Potentialen von einzelnen Abschnitten. Solche sind bei einem 4-Jahreszyklus schwer ersichtlich, wohingegen die jährliche Untersuchung einen guten Aufschluss über mögliche Potentiale und Tendenzen an bestimmten Abschnitten liefert (Bsp. Aa6, Aa14 und SB2). Um diese für künftige Aufwertungen (Bsp. Durch kleinere Maßnahmen) und einer möglichen Erweiterung der Strahlwirkung zu nutzen, müssen sie erkannt werden. Mit dem bisherigen WRRL-Monitoring ist dies jedoch nur eingeschränkt möglich. Eine zeitlich höhere Auflösung wird daher empfohlen.

3.5 Lassen sich die ausgewiesenen (potentiellen) Strahlursprünge belegen und finden sich ggf. weitere?

Ein Großteil der ausgewiesenen (potentiellen) Strahlursprünge im Einzugsgebiet der Münsterschen Aa lässt sich durch unsere Ergebnisse der Befischungen und Makrozoobenthosbeprobungen nicht bestätigen. Für einen Strahlursprung ist eine mindestens gute Bewertung der biologischen Qualitätskomponenten notwendig (LANUV NRW 2011). Diese Bewertung wurde wie schon in Tabelle 5 und Tabelle 6 ersichtlich wird, äußerst selten erreicht.

Betrachten wir lediglich die Fischzönosen in Abbildung 20, so wiesen zwei ausgewiesene Strahlursprünge sowie ein potentieller Strahlursprung gute Bewertungen auf. Diese befanden sich um die Kinderbachmündung (KB2 und KB3) sowie im Oberlauf des Schlautbaches (SB2). Für die Kinderbachmündung sind ein Strahlursprung sowie ein potentieller Strahlursprung ausgewiesen. Der Strahlursprung befindet sich einige Meter vor der Mündung der Kinderbachs in die Münstersche Aa auf Höhe der Mündung des Nienbergerbachs in den Kinderbach. Der ausgewiesene Strahlursprung im Schlautbach befindet sich im Stadtgebiet von Havixbeck. Allerdings sind diese Bewertungen lediglich im Befischungsjahr 2019 gefunden worden. In den Jahren zuvor und danach konnten entweder keine Befischungen durchgeführt werden, oder das Ergebnis fiel schlechter aus. Um eine nachhaltige Strahlwirkung und Wiederbesiedlung zu erreichen, ist jedoch eine gleichbleibend gute oder sehr gute Fischzönose notwendig (MUNLV o.J.). Daher kann hier nicht von einer Bestätigung dieser ausgewiesenen Strahlursprünge gesprochen werden, sondern lediglich von dem Potential dieser Abschnitte als ein solcher fungieren zu können.

Im Jahr 2020 wurden ebenfalls abschnittsweise gute Fischbewertungen gefunden (Abbildung 21). Diese befanden sich an der Mündung des Schlautbaches in die Münstersche Aa (SB4 und Aa6) sowie hinter der Mündung des Kinderbaches (Aa14). Für die Schlautbachmündung sind mehrere Strahlursprünge sowie potentielle Strahlursprünge ausgewiesen. Sie befinden sich im Schlautbach einige Kilometer vor der Mündung und in der Münsterschen Aa vor sowie nach der Mündung. Jedoch liegen die guten Bewertungen außerhalb dieser, im Schlautbach direkt vor der Mündung und in der Münsterschen Aa direkt danach. Da die Jahre zuvor Trocklediglich mäßige Fischzönosen aufzeigten, kann hier nicht von einem definitiven Strahlursprung gesprochen werden, aber ein mögliches Potential zeichnet sich ab. Ähnlich verhält es sich mit der Probenahmestelle Aa14 hinter der Kinderbachmündung. Ein möglicher positiver Strahlwirkungseffekt durch den vorgelagerten Strahlursprung im Kinderbach und potentiellen Strahlursprung an der Kinderbachmündung ist nicht auszuschließen.

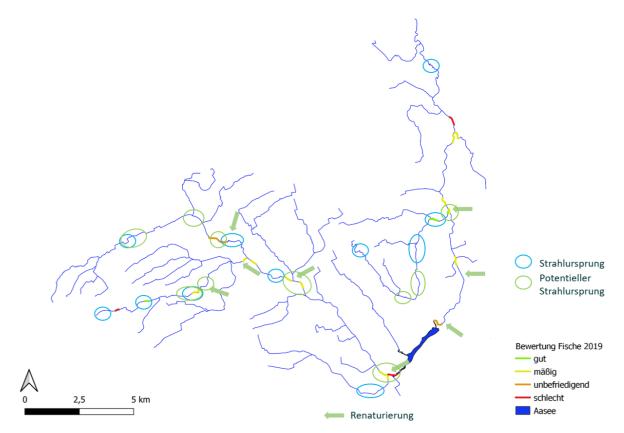


Abbildung 20: Darstellung der Befischungsergebnisse des Jahres 2019 (ausgewertet mit fibs) in Kombination mit den im Umsetzungfahrplan ausgewiesenen Strahlursprüngen sowie potentiellen Strahlursprüngen und umgesetzten Renaturierungsmaßnahmen. Strahlursprünge und potentielle Strahlursprünge setzen nachhaltig gute bis sehr gute Bewertungen voraus. Dargestellt ist das gesamte Elnzugsgebiet der Münsterschen Aa.

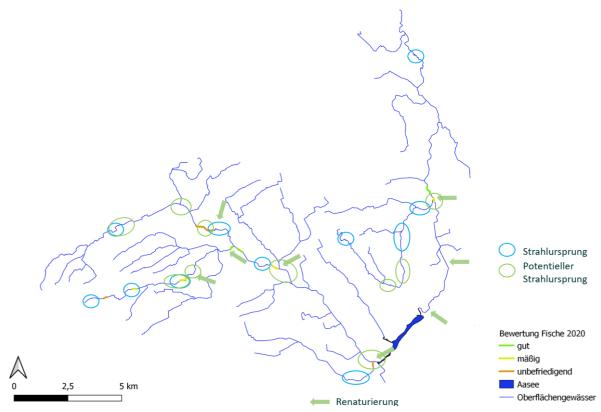


Abbildung 21: Darstellung der Befischungsergebnisse des Jahres 2020 (ausgewertet mit fibs) in Kombination mit den im Umsetzungfahrplan ausgewiesenen Strahlursprüngen sowie potentiellen Strahlursprüngen und umgesetzten

Renaturierungsmaßnahmen. Strahlursprünge und potentielle Strahlursprünge setzen nachhaltig gute bis sehr gute Bewertungen voraus. Dargestellt ist das gesamte Einzugsgebiet der Münsterschen Aa.

Betrachten wir nun die Makrozoobenthosbeprobung in den Jahre 2019 und 2020, so ergibt sich ein ähnliches Bild bzgl. der ausgewiesenen (potentiellen) Strahlursprünge (Abbildung 22). Die meisten von ihnen weisen eine Bewertung von schlecht bis mäßig auf. Eine Ausnahme hiervon ist erneut die Kinderbachmündung (Aa14) sowie der Schlautbach (SB1, AP4 Diepenbrock, AP4 Egger). Da es sich jedoch auch hier um Werte aus lediglich einem Jahr handelt, ist lediglich das Potential festzustellen. Gerade der Schlautbach weist hiervon einige auf. Besonders die durchgeführten kleineren Maßnahmen bei den Beprobungsstellen AP4 Diepenbrock und AP4 Egger scheinen sich hierfür positiv ausgewirkt zu haben. Sie werden in Kapitel 3.6 eingehender besprochen.

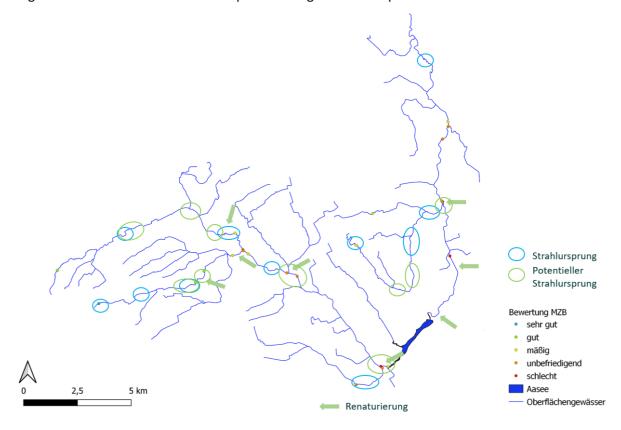


Abbildung 22: Darstellung der Makrozoobenthosergebnisse des Jahres 2019 (ausgewertet mit PERLODES) in Kombination mit den im Umsetzungfahrplan ausgewiesenen Strahlursprüngen sowie potentiellen Strahlursprüngen und umgesetzten Renaturierungsmaßnahmen. Strahlursprünge und potentielle Strahlursprünge setzen nachhaltig gute bis sehr gute Bewertungen voraus. Dargestellt ist das gesamte Elnzugsgebiet der Münsterschen Aa.

3.5.1 Ist eine ausreichende Strahlwirkung mit der aktuellen Planung gegeben?

Zustand bzw. das gute ökologische Potential eines Gewässerabschnittes auf. Hierbei muss die Gewässerstruktur nicht optimal sein, doch eine Migration von Tieren und Planzen (biologische Qualitätskomponenten) ist in ausreichendem Maße gegeben. Der zwischen zwei Strahlursprüngen gelegene Strahlweg ist in der Regel nicht besiedelbar und muss mit besagter Migration bis zum nächsten Strahlursprung überwunden werden. Durch kleinere Habitataufwertungen (sogenannte Trittsteinmaßnahmen) kann dieser Strahlweg aufgewertet und zumindest zeitweise besiedelt werden, sodass eine erfolgreiche Migration gegeben ist. Ziel ist es, dass somit eine Strahlwirkung über das gesamte Gewässer entsteht (LANUV NRW 201).

Eine ausreichende Strahlwirkung kann dementsprechend lediglich gegeben sein, wenn nachhaltige Strahlursprünge vorhanden sind. Wie bereits in 4.2 beschrieben, lassen sich die ausgewiesenen Strahlursprünge durch unsere Untersuchungen nicht belegen. Damit ist die Grundlage für eine

Strahlwirkung und Besiedelung im Einzugsgebiet der Münsterschen Aa nicht gegeben. Nichtsdestotrotz konnten verschiedene Potentiale gefunden werden, welche durch weitere Aufwertung möglicherweise für eine Strahlwirkung genutzt werden könnten. Besonders der Schlautbach sowie der Kinderbach weisen solche Potentiale auf.

Hinzu kommen die abiotischen Parameter, welche im Jahre 2022 untersucht wurden (vgl. 2.2). Die Ergebnisse zeigen ein variierendes Potential für die Strahlwirkung, meist jedoch im mäßigen und unbefriedigenden Bereich. Einzelne gute und sehr gute Bewertungen sind besonders im Schlautbach und im Oberlauf der Münsterschen Aa zu finden (Abbildung 23). Nichtsdestotrotz liegen auch diese Potentiale meist zu weit auseinander, als dass eine Überwindung des Strahlweges dazwischen möglich wäre. Eine Studie des LANUVs zufolge kann man lediglich bei der Laichwanderung mancher Fische von einer Überwindung von mehr als 10 km rechnen. Bei allen weiteren Ausbreitungen der Fische, des Makrozoobenthos und der Pflanzen ist jedoch lediglich eine maximale Überwindung von 1 km gegeben, meist sind es aber nur wenige 100 m (LANUV NRW 201).

Hinzu kommt der Verbau durch Querbauwerke, welche das Wandern des Makrozoobenthos sowie je nach Höhe auch der meisten Fischarten hindert. Besonders der Oberlauf der Münsterschen Aa und der Schlautbach weisen eine hohe Dichte an Querbauwerken jeglicher Größe auf (Abbildung 24). Eine potentielle Strahlwirkung wird durch diese stark eingeschränkt.

Eine ausreichende Strahlwirkung mit der aktuellen Planung ist für das Einzugsgebiet der Münsterschen Aa somit nicht gegeben.

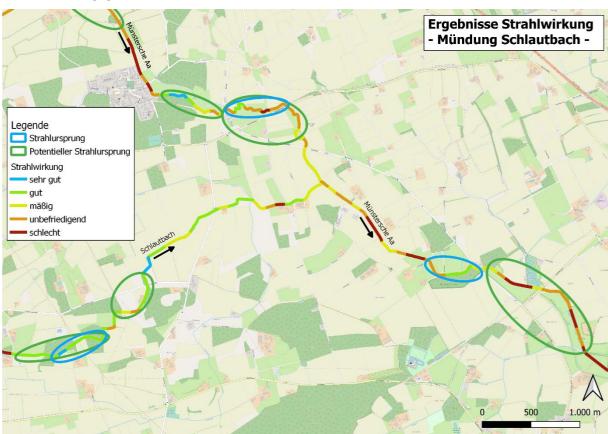


Abbildung 23: Darstellung der errechneten Strahlwirkung im Bereich der Schlautbachmündung in Kombination mit den im Umsetzungsfahrplan ausgewiesenen Strahlursprüngen sowie potentiellen Strahlursprüngen. Dargestellt sind die 100 m Abschnitte der LANUV-Stationierung mit der jeweiligen errechneten Bewertung. Hintergrundkarte: google maps

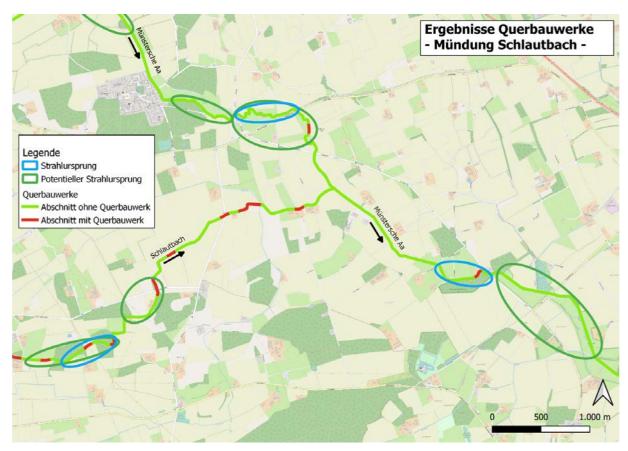


Abbildung 24: Darstellung der gefunden Querbauwerke im Bereich der Schlautbachmündung in Kombination mit den im Umsetzungsfahrplan ausgewiesenen Strahlursprüngen sowie potentiellen Strahlursprüngen. Dargestellt sind die 100 m Abschnitte der LANUV-Stationierung mit oder ohne Querbauwerke. Hintergrundkarte: google maps

3.5.2 Haben kleinere Maßnahmen einen positiven Effekt auf die biologischen Qualitätskomponenten

Im Rahmen dieses Projektes wurden kleinere Maßnahmen hinsichtlich ihrer Auswirkung auf die Makrozoobenthoszönose untersucht. Kleinere Maßnahmen sind hier klassifiziert als Maßnahmen, welcher ohne größeren Eingriff in den Gewässerverlauf durchgeführt werden können (Bsp. Totholz oder Kiesrauschen einbringen).

Ein positiver Effekt eben solcher Maßnahmen die biologische Qualitätskomponente Makrozoobenthos konnte durch unsere Beprobungen aus dem Jahr 2020 belegt werden. Zwei von drei beprobten Stellen wiesen eine gute Bewertung auf. Besonders die Sohlstruktur scheint hier eine positive Rolle zu spielen, da beide mit gut bewerteten Maßnahmen unter anderem Kies eingebracht hatten, während die als mäßig bewertete Maßnahmen lediglich einen Verbau entfernte. Hinzu kommt eine gute Bewertung der Probestelle Aa14. Dies ist zwar keine extra beprobte kleinere Maßnahmen, doch hier wurde zuvor eine Kiesrausche installiert und die Bewertungen vor und nach dieser befinden sich im unbefriedigenden Bereich. Dies lässt schlussfolgern, dass das punktuelle Einbringen von geeignetem Substrat eine Verbesserung für das Makrozoobenthos darstellt, ein Effekt in Richtung Strahlwirkung allerdings nicht gegeben ist. Hierbei sei allerdings angemerkt, dass die Migrationsrate des Makrozoobenthos gering ist und ein solcher Effekt möglicherweise nicht erwartbar sein kann.

Da die Beprobungsstelle AP4 Diepenbrock sich mit der Befischungstrecke SB3 überschneidet, konnte zumindest diese kleinere Maßnahme (Kieseinbringung) auch auf den Fischbestand hin untersucht werden. Ein positiver Effekt auf die Leitart Groppe ist zu verzeichnen, da diese hier in großer Abundanz zu finden war. Kies zählt zu den benötigten Habitaten der Groppe. Nichtsdestotrotz blieben die Befischungsergebnisse im mäßigen Zustand und eine allgemeine Verbesserung des Fischbestandes in den Jahren 2018-2020 war nicht zu verzeichnen.

3.6 Welche Faktoren – chemisch oder strukturell – sind entscheidend für die Zusammensetzung der Fisch- und Makrozoobenthosgemeinschaft im Einzugsgebiet?

Die Artenzusammensetzung der Fisch- und Makrozoobenthosgemeinschaften unterscheiden sich an der Probestelle Aa4 (Münstersche Aa), SB1 (Schlautbach) und am Meckelbach von den anderen Probestellen (Abbildung 25). Für beide Gemeinschaften zusammen sind sowohl die Habitate als auch wasserchemischen Parameter entscheident. Es zeigen sich ein großer Einfluss der Habitate Argylalal (Lehm, Ton) und Akal (Kies) sowie der chemischen Stoffe Nitrat und Chlorid auf Fische sowie Makrozoobenthos. Auffallend ist, dass besonders im Oberlauf der Einfluss on Nitrat dominiert, während im Unterlauf Chlorid vermehrt relevant ist.

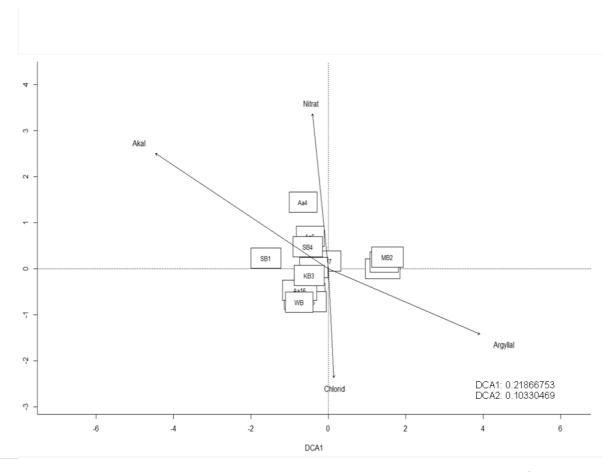


Abbildung 25: Detrended Correspondance Analysos aller Habitate und chemischen Parameter bezogen auf die Fisch- und Makrozoobenthoszönosen der einzelnen Probestellen.

Bei der Makrozoobenthosgemeinschaft alleine unterscheiden sich die Artgemeinschaten der Stelle Aa4 (Münstersche Aa) und die des Meckelbachs von den anderen Probestellen (*Abbildung 26*). Die Gemeinschaft der Probestelle Aa4 korreliert mit dem Nitratgehalt während die Probestellen am Meckelbach mit dem Habitat Argyllal (Lehm, Ton) korreliert sind. Weitere wichtige Parameter für die Bestimmung der Artgemeinschaften des Makrozoobenthos sind Chlorid und Akal (Kies). Die Spurenstoffe sind für die Zusammensetzung der Makrozoobenthoszönosen im Untersuchungsgebiet weniger relevant als die vier zuvor genannten Parameter.

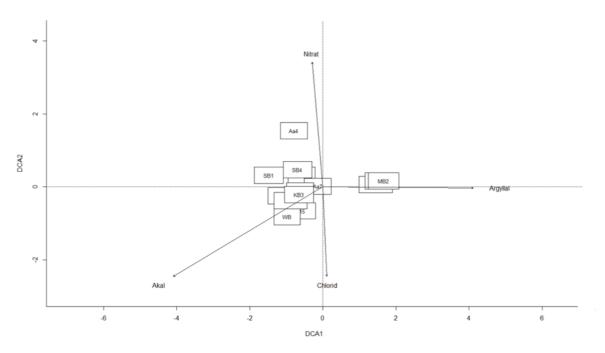


Abbildung 26: Detrended Correspondance Analyse aller Habitate und chemischen Parameter bezogen auf die Makrozoobenthoszönosen der einzelnen Probestellen.

Bei den Fischgemeinschaften unterscheidet sich die Probestelle SB1 (Schlautbach) von den anderen Probestellen (Abbildung 27). Für die Fischgemeinschaft alleine ist neben Chlorid und den Habitatparametern submerse Makrophyten und Mikrolithal das Antiepileptikum Carbamazepin wichtig. Schmerlen sind an Probestellen mit einer höheren Carbamazepinkonzentration generell seltener vertreten als Ukelei und Schleie. Die Bachforelle profitiert im Untersuchungsgebiet vom Habitat Mikrolithal.

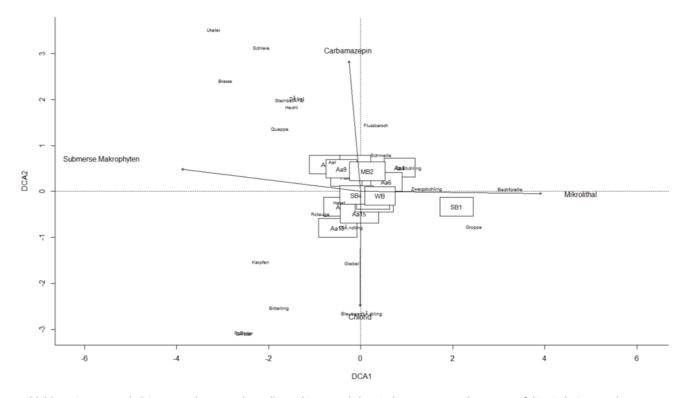


Abbildung 27: Detrended Corespondance Analyse aller Habitate und chemischen Parameter bezogen auf die Fischzönosen der einzelnen Probestellen.

Vermutlich durch die größeren Abudanzen prägt die Makrozoobenthosgemeinschaft die gemeinsame Analyse der Fisch- und Makrozoobenthosgemeinschaften stärker als die Fische. Aus diesem Grund ähneln sich die DCAs der Makrozoobenthosgemeinschaften und der gemeinsamen (Fische und Makrozoobenthos) DCA stärker als die der Fischgemeinschaften.

4 Öffentlichkeitsarbeit/Veröffentlichungen/Vorträge

Zum Ziel des Projektes gehörte es, die gewonnenen Ergebnisse und Erkenntnisse allgemein zugänglich zu machen und ein entscheidungsunterstützende Elemente und Materialien für die Aktuere bereitszustellen. In Nordrhien-Westfalen obliegt die Umsetzung der Wasserrahmenrichtlinie den Bezirksregierungen, also der höheren Wasserbehörde. Vor Ort sind es jedoch vor allem die Akteure in den Gemeinden, Baulastträgern und Wasser- und Bodenverbänden, die für das Erreichen der Ziele Verantwortlich zeichnen. Hinzu kommen zivilgesellschaftliche Stakeholder, aus der Land- und Fischereiwirtschaft, die sowohl als Privatpersonen agieren, als auch in Verbänden organisiert sind. Daher wurde ein Projektbegleitender Beirat in Leben gerufen, über den kontiniuiertlich die Projekarbeit begleitet wurde.

Neben Veröffentlichungen in wissenschaftlichen Zeitschriften wurde ein Webauftritt gestaltet. Eine das Projekt zusammenfassende und den Webaufritt ergänzende Broschüre ist in Arbeit. Diese werden die Grundlage für die weiteren Umsetzungsaktivitäten sein.

4.1 Beiratstreffen

Mehrere Beiratstreffen mussten aufgrund der Coronapandemie verschoben werden bzw. fielen aus. Im Mai 2022 konnten dann die Ergebnisse und Schlussfolgerungen mit dem Beirat verschiedenen Praxispartnern diskutiert. Das Treffen fand am Institut für Landschaftskologie der WWU statt. Anwesend waren für den Gewässerbereich Verantwortliche der Stadt sowie Bezirksregierung Münster, des Kreises Steinfurt Steinfurt, des WLV und der Wasser- und Bodenverbände.

4.2 Fachtagungen

Der Meilensteinplan sah diverse Beträge zu Fachtagungen vor. Auf der Jahrestagung der Deutschen Limnologischen Egsellschaft wurde das Projekt 2019 vorgestellt.

Vortrag auf der Jahrestagung der DGL 2019 – 23. -27. September 2019 in Münster: Spurenstoffbelastungen der Münsterschen Aa im jahreszeitlichen Wandel. Johanna Buss; Saskia Rohrer; Christine Achten; Tillmann Buttschardt; Abstract s. Anhang

Poster auf der Jahrestagung der DGL 2019 – 23. -27. September 2019 in Münster, Deutschland: 172 km2 Vielfalt im Münsterland – biologische und hydrochemische Untersuchungen in der Münsterschen Aa. Saskia Rohrer; Johanna Buss; Benjamin Kupilas; Christine Achten; Tillmann Buttschardt

Ein weiterer Vortrag fand im Ramen der Ringvorlesung WasserWissen des Netzwerks Wasser der Münsterschen Hochschulen statt am 20.11.2019.

Vortrag im Rahmen der Ringvorlesung WasserWissen am 20.11.2019: "172 km² Vielfalt im Münsterland – hydrochemische und biologische Untersuchung im Einzugsgebiet der Münsterschen Aa". Saskia Rohrer, Johanna Buss

Ein Vortrag auf der Tagung Wasser 2020 der Gesellschaft deutscher Chemiker; Fachgruppe Wasserchemische Gesellschaft vom 18.-20. Mai 2020 in Potsdam konnte leider nicht gehalten werden, da die Tagung abgesagt wurde. Stattdessen ist ein Manuskript verfügbar, das online erhältlich ist und im Abstractband veröffentlicht wurde (s. Anhang 18 und 4.5 Publikationen).

In den Jahren 2021 bis 2022 konnte das Projekt leider keinem Fachpublikum vorgestellt werden, da geplante Tagungen aufgrund der SARS-Covid19-Pandemie abgesagt bzw. digital mit eingschänktem Programm durchgeführt wurden. Für das Gewässerschutzforum im Jahr 2023 ist ein Vortrag bereits

vorgemerkt und so werden die Projektergebnisse dort vorgestellt werden.

4.3 Webauftritt/Entscheidungsunterstützungssystem

Mit dem Internetauftritt https://tieflandbaeche-aufwerten.de wurden die Ergebnisse und das Entscheidungsunterstützungssystem für Praxispartner sowie interessierte BürgerInnen öffentlich gemacht.

Das Entscheidungsunterstützungssystem ist webbasiert aufbereitet. Die einfache Anwendung über die

EUfMAa-Webseite ermöglicht eine Nutzung durch die Öffentlichkeit und durch die Gemeinden und Verbände ohne die Installation eines Programmes. Diese Aufbereitung ermöglicht es außerdem, die Informationen über einen langen Zeitraum zur Verfügung zu stellen sowie einen Weiterausbau und einfache Aktualisierung bei Bedarf.

Die EUfMAa-Webseite, tieflandbaeche-aufwerten.de, stellt allgemeine Informationen zu dem EUfMAa-Projekt und das Entscheidungsunterstützungsystem (EUS) zur Verfügung. Die Informationen zum Projekt ermöglichen es, transparent darzulegen, welche Daten durch das Projekt erhoben wurden und informiert über das Einzugsgebiet der Münsterschen Aa.

Das EUS wird durch zwei große Module, die untereinander verknüpft sind, bereitgestellt.

Zum einen bietet es Unterstützung für die Renaturierung von Tieflandbächen im Allgemeinen und zum anderen für die Aufwertung der Münsterschen Aa. Für die allgemeine Entscheidungsunterstützung wurden Basisinformationen zu wichtigen Planungsschritten und Kataloge ausgearbeitet. Als erstes Teilmodul informiert der Abschnitt "Priorisierung der Maßnahmen" die Nutzer*innen über wichtige Teilbereiche der Renaturierung, wodurch wichtige Planungsschritte unterstützt werden und die Nutzung der Kataloge angeleitet wird. Durch die Informationen zu verschiedenen Nutzungsansprüchen und Restriktionen, den Ökosystem- und Strukturdefiziten und dem Strahlwirkungskonzept können sich auch weniger fachkundige Zielgruppen wie beispielsweise Gemeinden oder Fischereiverbände das geeignete Wissen aneignen, um die Kataloge effektiv zu nutzen. Ist ausreichend Expertise vorhanden, kann dieser Teilabschnitt übersprungen werden.

Das zweite Teilmodul umfasst drei Kataloge zu den Leitarten von sandiggeprägten Tieflandbächen und Renaturierungsmaßnahmen. Bei der Aufwertung von Tieflandbächen müssen die Leitarten berücksichtig werden, um eine möglichst effiziente und zielführende Auswahl an Maßnahmen zu treffen. Das Beiratstreffen mit entsprechenden potenziellen Nutzer*innen hat gezeigt, dass Informationen zu den Habitatansprüchen bewertungsrelevanter Arten nicht immer ausreichend bekannt ist. Die zwei Leitartenkataloge zu Fischen und Makrozoobenthos stellen diese wichtigen Informationen bereit. Sie sollen anleiten, Gewässer entsprechend den Ansprüchen gewässertypischer Leitarten aufzuwerten. Über die Kataloge gelangen die Nutzer*innen zu Profilen der einzelnen Leitarten. Diese beinhalten die Habitatansprüche und geeignete Maßnahmen für die Verbesserung der Lebensbedingungen der Arten. In der praktischen Nutzung soll dies die Entscheidung für passgenaue Aufwertungsmaßnahmen unterstützen, wenn beispielweise nur eine mäßige Bewertung eines Gewässerabschnittes vorliegt, da einige bestimmte Leitarten nicht vorkommen. Anhand der Profile können dann passende Maßnahmen für die Verbesserung des Habitats für die entsprechende Art gefunden werden. Dies leistet der Maßnahmenkatalog. Dieser ist ein Portfolio ausgewählter

Renaturierungsmaßnahmen für die Aufwertung von Tieflandbächen. Die Umsetzung der Maßnahmen, mögliche Kombinationsmöglichkeiten und der Nutzen für verschiedene Leitarten werden in diesem Modul dargelegt. Durch die Verlinkung zu den Leitarten und zu ähnlichen Maßnahmen kann sich der Nutzer verschiedene Maßnahmen für die Renaturierung eines Gewässerabschnittes zusammenstellen.

Das zweite Modul des EUS beinhaltet die Aufbereitung der Ergebnisse des Projektes der Münsterschen Aa. Zentrum dieses Moduls ist eine interaktive Karte des Einzugsgebietes der Münsterschen Aa. Für die Aufbereitung der spezifischen Entscheidungshilfe wurden vier Abschnitte ausgewählt, die sich als Schlüsselstellen für eine ganzheitliche Aufwertung des Tieflandbaches herausstellten. Zu den Abschnitten gelangen die Nutzer*innen über das Anklicken dieser auf der interaktiven Karte des Einzugsgebietes der Münsterschen Aa. Auf den Profilen der Abschnitte werden die Ergebnisse des EUfMAa-Projektes durch Texte und Karten präsentiert. Die Nutzer bekommen Informationen zu den Befischungs- und Makrozoobenthos Ergebnissen, den Chemiedaten, Querbauwerden, der Beschattung, der Sohlstruktur, der Uferrandstreifen und zur durchgeführten Strahlwirkungsanalyse. Dadurch werden mögliche Maßnahmen für die Aufwertung der Abschnitte priorisiert. Die vorgeschlagenen Maßnahmen sind über Hyperlinks mit den Maßnahmen des ersten Teils des EUS verlinkt, sodass sich Nutzer*innen über die einzelnen Maßnahmen informieren können.

Bericht/Broschüre 4.4

zum Internetauftritt wird ein Bericht mit den Ergebnissen Entscheidungsunterstützersystems angefertigt. Die Veröffentlichung ist für das 2. Quartal 2023 geplant. Die Studie wird erschienen als Band 5 in der Reihe XVII der Wissenschaftlichen Schriften der WWU Münster.

4.5 **Publikationen**

Im Rahmen der Fachtagung Wasser 2020 der GdCh wurde ein Manuskript veröffentlicht:

Buss, J., C. Achten: (2020) Arzneimittel und Pestizide in der Münsterschen Aa – Abhängigkeit derStoffeinträge von jahreszeitlichen Abflussschwankungen. Kurzreferate zur Wasser 2020 -Wasserchemische Gesellschaft – Fachgruppe in der Gesellschaft Deutscher Chemiker. Link s. Anhang 16

In der internationalen Fachzeitschrift Science of the Total Environment wurde 2021 das Paper "Spatiotemporal variations of surface water quality in a medium-sized river catchment (Northwestern Germany) with agricultural and urban land use over a five-year period with extremely dry summers" veröffentlicht (Anhang 17). Zwei weitere Publikationen sind für 2023 im Rahmen einer Doktorarbeit

Buss, J., C. Achten (2021): Spatiotemporal variations of surface water quality in a medium-sized river catchment (Northwestern Germany) with agricultural and urban land use over a five-year period with extremely dry summers. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.151730

5 Fazit und Ausblick

Die Umsetzung der Wasserrahmenrichtlinie an der Münsterschen Aa ist weit hinter dem von der Eurpäischen Unio, nach welchem spätestens 2027 das gute Ökologische Potenzial (GÖP) erreicht sein soll. im Projekt waren folgende Puntke vorgesehen:

- Kooperative Entwicklung einer Umgebung für die Entscheidungsunterstützung in der Umsetzungspraxis der Wasserrahmenrichtlinie an HMWB Gewässern der WRRL auf Einzugsgebietsebene für erheblich veränderte Tieflandbäche.
- Ableitung eines passgenaueren Monitorings zur Darstellung der Trends in der Gewässerentwicklungspraxis für erheblich veränderte Tieflandbäche.
- **Klärung von Kausalbeziehungen** zwischen den biotischen und hydrochemischen Qualitätskomponenten.
- Anpassung und Implementierung des Strahlwirkungskonzeptes in die Umsetzungspraxis.

In den folgenden Abschnitten werden zusammenfassend die o.g. Ziele diskutiert. Es lässt sich sagen, dass das Einzugsgebiet der Münsterschen Aa trotz Implementierung des Strahlwirkungs- und Trittsteinkonzeptes noch immer nicht das gute ökologische Potenzial erreicht hat. Die ökologischen Qualitätskomponenten Fische und Makrozoobenthos befinden sich zumeist in einem unbefriedigenden oder mäßigen Zustand. Vereinzelt wurden gute Bewertungen gefunden, welche auf ein Wiederbesiedlungpotenzial insbesondere im Schlautbach sowie Kinderbach schließen lassen. Daher konnte die Bedeutung der Nebengewässer für ein Monitoring bestätigt werden. Die Kartierung der Sohlstrukturen zeigt jedoch hier auch mannigfaltige Defizite aber auch Quellpopulationen von geschützten Arten, die ohne diese detaillierte Betrachtung möglicherweise übersehen worden wären.

Die überaus starke Belastung der Münsterschen Aa mit Närhstoffen, welche vor allem im Hochwasserfall aus den Flächen des Einzugsgebietes eingespälte werden und einer sehr großen Anzahl an Mikroschadstoffen, welche vor allem im Niedrigwasserfall eine Rolle spielen bildet eine diffuse Hintergrundbelasstung, welche mit verantwortlich für den schlechten Zustand der Qualitätskomponenten zeichnet. Ein kausaler Zusammenhang zwischen Hydrochemie und Biologie konnte nicht eindeutig hergeleitet werden, da zuvorderts die Gewässerstruktur defizitär ist. Dies hebt jedoch gleichzeitig hervor, dass kleine Maßnhamne, z.b. im Rahmen der Gewässerunterhaltung durchaus positive Wirkungen für die Geässerentwicklung haben.

Bisher durchgeführte kleinere Renaturierungen weisen zudem eine positive Wirkung auf, sind jedoch in der Fläche zu wenige um eine größere Verbesserung zu bewirken. Degradationsstrahlwege sind mit ihnen noch nicht überbrückbar. Zusätzlich liegen die ausgewiesenen Strahlursprünge zu weit auseinander und konnten zumeist auch nicht mit guten bis sehr guten Bewertungen belegt werden. Eine Aufwertung dieser ist notwendig.

Als besonders relevant für die verfehlte Strahlwirkung wurde die Gewässerstruktur identifiziert. Alle drei hierbei untersuchten Parameter (Sohlstruktur, Beschattung, Uferrandstreifen) weisen Defizite auf und könnten in einem guten Zustand zu einer verbesserten Strahlwirkung beitragen. Besonders die Sohlstrukutur kann durch geeignete kleinere Maßnahmen aufgewertet werden und so neue Habitatstrukturen zur Verfügung stellen. Ein geeignetes Entscheidungsunterstützungsystem wurde erarbeitet und online zur Verfügung gestellt.

Im Verlauf des Projektes ergaben sich jedoch neue Forschungsschwerpunkte und Fragestellungen, welcher zu Beginn des Projektantrages noch nicht ersichtlich waren. Diese sollen im Folgenden kurz dargestellt werden.

Einen großen Einfluss auf die Probenahmen und Ergebnisse hatten die Extremwetterjahre mit starker Hitze und dem Trockenfallen großer Gewässerabschnitte. Diese Phänomene sind mit Zunahme der Erderwärmung in immer kürzeren Abständen zu erwarten und werden das Bild des Einzugsgebietes der Münsterschen Aa prägen. Obwohl die erfolgten Renaturierungsmaßnahmen – kleine sowie große – positive Effekte aufwiesen, können sie das Trockenfallen eines Gewässerabschnittes nicht ausgleichen. Der Wasserrückhalt besonders in Extremjahren wird daher in naher Zukunft von immer größerer Bedeutung sein. Unsere Kartierung der Querbauwerke lässt darauf schließen, dass diese eine solche Funktion bieten können. Gleichzeitig verhindern sie jedoch die Wanderung von Arten und eine erfolgreiche Strahlwirkung in den Unterlauf. Eine weitere möglicher Speisung der Gewässer liegt in Form von Kleinkläranlagen vor. Daher sehen wir dringenden Forschungsbedarf inwiefern man eine ganzjährige Wasserführung auch in extremen Jahren bei zeitgleicher ungehinderter Wanderung gewährleisten kann.

Mit Blick auf das sich ändernde Wasserregime stellt sich ebenfalls die Frage ob und inwiefern die Analysewerkzeuge fibs und PERLODES geändert werden müssten um die sich verändernden Umweltparameter wiederzugeben. Sind die Referenzen der Fisch- sowie Makrozoobenthoszönosen vor dem Hintergrund dieser Veränderungen noch aktuell?

Ein Fokus sollte vor diesem Hintergrund auch auf Kleinkläranlagen gelegt werden, welche die Gewässer auch während extremer Hitze zu speisen scheinen. Mit dem Kläranlagenwasser werden allerdings auch Spurenstoffe und Pharmazeutika eingespült, welche die Wasserqualität reduzieren. Fragen über die Wichtigkeit, den Einfluss und die Auswirkungen dieser (Klein)Kläranlagen sollten dringend beantwortet werden.

Des Weiteren zeigen unsere Ergebnisse der Gewässerchemie einen Eintrag trotz implementierter Gewässerrandstreifen. In Kombination mit der Gewässerstrukturgütekartierung, welche ebenfalls die Einleitungen einschloss, ergibt sich die Frage, ob ein Gewässerrandstreifen mit darunter liegenden Drainagen und Einleitungen überhaupt einen Rückhalteeffekt aufweist. Eine Untersuchung der Chemielast dieser Drainagen und einer möglichen Verringerung dieser, raten wir daher dringend an.

Des besseren Überblicks werden die im Projekt zu Grunde liegenden Hypothesen abschließend noch in einer Überischt kommentiert und eingeordet.

- Trotz vorherrschend schlechter Strukturen, weisen die HMWB-Gewässer im Münsterland gewisse biotische Potentiale auf.
 - Für das Einzugsgebiet der Münsterschen Aa lässt sich sagen, dass diese Aussage zutreffend sein kann. Allerdings sind die se Potenziale gering und liegen meist in den von den Planern der WRRL-Umsetzung nicht betrachteten Nebengewässern. So besteht durchaus die Gefahr dass diese Übersehen werden. Das DBU-Projekt konnte daher in diesem Punkt einen wichtigen Beitrag leisten, in dem angeraten wird, v.a. die Strecken mit einer guten Gewässerstruktur bevorzugt zu betrachten. Da der Hauptsrom der Münsterschen Aa wie ebenfalls auch andere Strecken u.a. von Berkel, Dinkel, Vechte etc. weitgehend Ausgebaut und strukturarm ist, kann davon ausgegangen werden, dass dieser Befund übertragbar ist. Ein essentielles Augenmerk ist auf die Fachkunde der Betriebsingenieure der Wasser- und Bodenrverbände zu legen. Von ihnen wird es abhängen, ob diese verborgenen biotischen Potenzial genutz werden oder "aus versehen" z.B. durch unsachgemäße Gewässerunterhaltung verloren gehen. Das Web-basierte Entscheidungsunterstützungssystem (EUfMAa) kann hier eine Hilfestellung liefern.
- Die Repräsentativität der (Dauer-)Monitoringmessstellen muss geklärt werden. Die Messstellen an der Münsterschen Aa die für das (Dauer-)Monitoring des LANUV ausgewäht wurden zeigen prinziell gute Ergebnisse für den Gesamtzustand der Qualitätskomponenten. Für die Hydrochemie gilt das sogar noch stärker, da herausgearbeitet werden konnte, dass die Stofffrachten sehr stark vom Abfluss abhängen. Allerdings ist gerade bei Niedrigabflüssen von höchster Bedeutung an den Kläranlagenabläufen qualitätskontrollierende Messungen zu machen. Wie zuvor bereits angedeutet liegen nicht unwichtige Potenziale in den Nebengewässern, sodass das Messnetz erweitern werden sollte. Auch werden die positiven Effekt von kleineren Maßnahmen mit geringer Reichweite nicht erfasst, da die Degradationsstrahlwege deren Effekte im Unterstrom schon anch kurzer Fließstrecke zunichte machen.

- Die Bedeutung von nicht leitbildkonformen Strukturen für die Fauna (z.B. Steinschüttungen als Ersatz für Totholz) muss auch naturschutzfachlich eingeschätzt werden (FFH-Arten). Es konnte beobachtet werden, dass naturschutzfachlich bedeutsame Arten (Groppe) in Strukturen vorkommen, die nicht dem Leitbild entsprechen. So ist bei Maßnahmen am Gewässer stets naturschutzfachliche Kompetenz gefragt. Insbesondere bei der Gewässerunterhaltung muss ein Umdenken stattfinden. Hier sehen wir das größte kurzfrisig zu mobilisierende Potenzial für eine Verbesserung an den Gewässern, da sich gezeigt hat, dass der Flächendruck auf die Landwirtschatf so groß geworden ist, dass Maßnahmen am Gewässer, für die zusätzliche Fläche benötigt wird kaum mehr umzusetzen sind. Dies wird die Umsetzung der Wasserrahemrichtlinie weiter verzögern. Inwiewit die neuen Verordnungen zur Pestizidausbringung und die Gesetze zur Gewässerrandstreifen hier Verbesserungen bringen, belibt abzuwarten. Wir sehen, dass die fehlende Bereitschaft Gehölze zu entwickeln und die Gewässerrandstreifen mit Graseinsaaten und Mahd kurz zu halten, für die Qualitätskomponenten im Gewässer (Fische und MZB) eher negativ sind.
- Für die Implementierung des Strahlwirkungs- und Trittsteinkonzepts müssen die negativen Wirkungen von Degradationsstrecken abschnittsweise überprüft werden.

 Die Umsetzung des Strahlwirkungskonzeptes kann zumindest bei der Münsterschen Aa als gescheitert angesehen werden. Die Strahlursprünge entsprechen nicht den Anforderungen und enthalten nicht die Arten, die sie enthalten müßten. Es ist sogar so, dass entlang des Hauptstromes der Münsterschen Aa zwar Strahlursprünge ausgewiesen wurden, aber de Fakto kein einziger existiert. Gerade durch die extremen Niedrigwasser in 2019, 2020 und 2022 hat die Biozönose vermutlich stark gelitten. Die Auswirkungen sind derzeit nicht einzuschätzen. Wir konnten beobachten, dass eine große Renaturierungsmaßnahme keine Effekte zeigte. Es muss hierbei beachtet werden, dass sich Erfolge bei Renaturierungen in der Vergangenheit immer erst verzögert eingestellt haben. Ob dies angesichts der Änderungen im Abfluss an der Münsterschen Aa bestätigen lässt, muss abgewartet bzw. weiter untersucht werden.
- Der Einfluss von hydrochemischen Stressfaktoren muss geklärt werden. In den trockenen Sommern resultierte fast der gesamte Abfluss in der Münsterschen Aa i Ablauf der Kläranlagen. Es konnte eine Vielzahl an Stoffen nachgewiesen werden, deren Wirkung auf die biotischen Komponenten nicht klar belegt werden konnten. Dies lag u.a. auch an der schlechten Strukturgüte der Gewässer. Hier besteht weiterhin Forschungsbedarf. Hinzu kommt die sehr hohe Nitrat- und Phosphatlast, welche fast ausschließlich aus landwirtschaftlichen Quellen stammt. Es konnte nachgewiesen werden, dass regenarme Sommer das Nitrat zunächst zurück halten. In der Folge werden in niederschlagsreichen Wintern diese Reservoirs wieder aktiviert und mangels Vegetationsbedeckung über die Gewässer abtransportiert.
- Maßnahmen der Bodenbewirtschaftung im Einzugsgebiet müssen auf ihre Wirksamkeit hin untersucht werden.
 Die Bodenordnung im Einzugsgebiet ist daher die Schlüsselgröße, mit der auch die Qualität der Gewässer verbessert werden kann. Die naua GAP 2023 hat mit der Einführung der GLÖZ ergänzend

zu den Zielen der WRRL sicher einen bedeutenden Wechsel hervorgebracht. Neben dem weiteren Monitoring der kleinen Maßnahmen am Gewässer, der Begleitung der Umsetzung der GLÖZ halten wir in Teilen eine gewässerorientierte Flurbereinigung zur Schaffung von Renaturierungsstrecken, den Einbau einer vierten Reinigungsstufe an den Kläranlagen und eine weitere Sensibilisierung der Landwirt*innen sowie die deutliche Reduzierung der Nährstofffrachten im Einzugsgebiet für erforderlich, um die Ziele der WRRL zu erreichen.

6 Literatur

BADER, T.; SCHULZ, W.; LUCKE, T.; SEITZ, W., WINZENBACHER, R. (2016) Application of Non-Target Analysis with LC-HRMS for the Monitoring of Raw and Potable Water: Strategy and Results. In: Jörg E. Drewes und Thomas Letzel (Hg.): Assessing Transformation Products of Chemicals by Non-Targetand Suspect Screening – Strategies and Workflows Volume 2, Bd. 1242. Washington, DC: American Chemical Society (ACS Symposium Series), S. 49–70

BAYER, A., ASNER, R., SCHÜSSLER, W., KOPF, W., WEIß, K., SENGL, M., LETZEL, M., 2014. Behavior of sartans antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for theaquatic environment. Environmental science and pollution research international 21 (18), 10830–10839. doi:10.1007/s11356-014-3060-z.

COOPER, R.; HISCOCK, K.; LOVETT, A.; DUGDALE, S.; SÜNNENBERG, G.; VRAIN, E. (2020) Temporal hydrochemical dynamics of the River Wensum, UK: Observations from long-term high-resolutionmonitoring (2011-2018). The Science of the Total Environment 724

ELWASWEB (2021) *Kleinkläranlagen mit Einleitung in Oberflächengewässer.* https://www.elwasweb.nrw.de/elwas-web/index.jsf# , abgerufen am: 15.03.2021

GEOLOGISCHER DIENST NRW. DIGITALES LANDSCHAFTSMODELL 50 NW (2021) www.geoportal.nrw., abgerufen am 26.02.2021

JEKEL, M. und DOTT, W. (2013) *Polare organische Spurenstoffe als Indikatoren im anthropogen beeinflussten Wasserkreislauf.* Leitfaden BMBF-Fördermaßnahme RisKWa- Risikomenagement von neuen Schadstoffen und Krankheitserregern im Wasserkreislauf

KÄNDLER, M. ET AL. (2017) Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Science of the Total Environment 586 (1316-1325)

KENDALL, C., ELLIOTT, E.M., WANKEL, S.D., 2007. Tracing anthropogenic inputs of nitrogen to ecosytems. In: Michener, R., Lajtha, K. (Hrsg.), Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing Ltd, Oxford, UK, pp. 375–449.

LANDWIRTSCHAFTSKAMMER NRW – KREISSTELLE COESFELD/RECKLINGHAUSEN (2018) Kooperation Landwirtschaft und Wasserwirtschaft im Einzugsgebiet der Stevertalsperre – Ein Bericht über die Ergebnisse der Beratung

LANDWIRTSCHAFTSKAMMER NRW (2020) Was ist in der Gülle enthalten.

https://www.landwirtschaftskammer.de/landwirtschaft/ackerbau/duengung/guelle/duenger/guelleinhaltsstoffe.htm. Zuletzt abgerufen am 30.03.2021

LANDTAG NORDRHEIN-WESTFALEN (2016): Gesetzentwurf der Landesregierung Gesetz zur Änderung wasser- und wasserverbandsrechtlicher Vorschriften. – Online unter:

https://www.landtag.nrw.de/portal/WWW/dokumentenarchiv/Dokument?typ=P&Id=MMD16/1079 9&quelle=alle&wm=1&action=anzeigen (zuletzt abgerufen am 25.04.2016).

LANUV NRW (LANDESAMT FÜR NATUR, UMWELT UND VERBRAUCHERSCHUTZ NORDRHEIN-WESTFALEN) (Hrsg.) (2011): Strahlwirkungs- und Trittsteinkonzept in der Planungspraxis - Arbeitsblatt 16. Recklinghausen

LANUV NRW (LANDESAMT FÜR NATUR, UMWELT UND VERBRAUCHERSCHUTZ NORDRHEIN-WESTFALEN) (Hrsg.) (2021): Monitoring zu Renatureirungsmaßnahmen un Wiederbesiedlungsquellen. LANUV-Fachbericht 121. Recklinghausen

LETZEL, M., 2013. Verbundprojekt RISK-IDENT: Bewertung bislang nicht identifizierter anthropogener Spurenstoffe sowie Handlungsstrategien zum Risikomanagement im aquatischen System. 2. Statusseminar der BMBF-Fördermaßnahme RiSKWa – Risikomenagement von neuen Schadstoffen und Krankheitserregern im Wasserkreislauf, 24 September 2013, Karlsruhe.

LORENZ, A. & FELD, C. (2012): Upstream river morphology and riparian land use overrule local

restoration effects on ecological status assessment. – Hydrobiologica 704: 489–501.

MEIER, C., HAASE, P., ROLAUFFS, P., SCHINDEHÜTTE, K., SCHÖLL, F., SUNDERMANN, A., HERING, D. (2006) Methodisches Handbuch Fließgewässerbewertung, Handbuch zur Untersuchung und Bewertung von Fließgewässern auf Basis des Makrozoobenthos vor dem Hintergrund der EG- Wasserrahmenrichtlinie.

MKULNV NRW (MINISTERIUMFÜR KLIMASCHUTZ, UMWELT, LANDWIRTSCHAFT, NATUR- UND VERBRAUCHERSCHUTZ DES LANDES NORDRHEIN-WESTFALEN) (2015a): Steckbriefe der Planungseinheiten in den nordrheinwestfälischen Anteilen von Rhein, Weser, Ems und Maas. Bewirtschaftungsplan 2016-2021. Oberflächengewässer und Grundwasser Teileinzugsgebiet Ems/Ems NRW. Düsseldorf.

MKULNV NRW (MINISTERIUMFÜR KLIMASCHUTZ, UMWELT, LANDWIRTSCHAFT, NATUR- UND VERBRAUCHERSCHUTZ DES LANDES NORDRHEIN-WESTFALEN)(2015b): Unser Wasser, unsere Gewässer in NRW. Schon alles gut? Düsseldorf.

MKULNV NRW (MINISTERIUMFÜR KLIMASCHUTZ, UMWELT, LANDWIRTSCHAFT, NATUR- UND VERBRAUCHERSCHUTZ DES LANDES NORDRHEIN-WESTFALEN) (2020): Leitfaden Monitoring Oberflächengewässer. Integriertes Monitoring ab dem 4. Monitoringsyklus für den dritten Bewirtschaftungsplan, einschließlich landesspezifischer, nationaler und internationaler Messprogramme. Düsseldorf.

MUNLV NRW (Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen) (2010): Blaue Richtlinie - Richtlinie für die Entwicklung naturnaher Fließgewässer in Nordrhein-Westfalen Ausbau und Unterhaltung. Düsseldorf

MUNV.NRW (MINISTERIUM FÜR UMWELT, NATURSCHUTZ UND VERKEHR DES LANDES NORDRHEIN-WESTFALEN) (o.J.): ELWAS-WEB. https://www.elwasweb.nrw.de/elwas-web/index.xhtml, abegrufen am: 01.10.2022

MUNV.NRW (MINISTERIUM FÜR UMWELT, NATURSCHUTZ UND VERKEHR DES LANDES NORDRHEIN-WESTFALEN) (o.J.): Flussgebiete NRW. https://www.flussgebiete.nrw.de/, abegrufen am: 01.10.2022

OGEWV (OBERFLÄCHENGEWÄSSERVERORDNUNG) - Verordnung zum Schutz von Oberflächengewässern vom 20. Juni 2016. (2016) Erschienen in: Bundesgesetzblatt Teil 1 Nr. 28

OBERLEITNER, D.; SCHMID, R.; SCHULZ, W.; BERGMANN, A.; ACHTEN, C. (2021) Feature-based molecular networking for identification of organic micropollutants including metabolites by non-target analysis applied to riverbank filtration. Environmental Science and Technology submitted

PLANUNGSBÜRO KOENZEN (im Auftrag des LANUV) (2016) Fischreferenzen für das höchste ökologische Potenzial in NRW, Erarbeitung von Fischreferenzen zur Bewertung von erheblich veränderten Wasserkörpern (HMWB) mit Hilfe des HMWB-Moduls der Fischdatenbank für Nordrhein-Westfalen (FischInfo)

PLUSKAL, T.; CASTILLO, S.; VILLAR-BRIONES, A.; OREŠIČ, M. (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395

SCHIMMELPFENNIG, S. UND DÜNNBIER, U. (2019) Der Versuch, die Verordnungspraxis von Antihypertonika für eine bessere Trinkwasserqualität in Berlin zu beeinflussen – ein Erfahrungsbericht. Jahrestagung Wasserchemische Gesellschaft 2019, Erfurt

STOCK, P., RODER, S., BURGHARDT, D., 2021. Further optimisation of the denitrifier method for the rapid 15 N and 18 O analysis of nitrate in natural water samples. Rapid Commun. Mass Spectrom. 35 (1)

STOLL, S., SUNDERMANN, A., LORENZ, A., KAIL, J. & HAASE, P. (2013): Small and impoverished regional species pools constrain colonisation of restored river reaches by fishes. – Freshwater Biology 58: 664–674.

STOLL, S., KAIL, J., LORENZ, A., SUNDERMANN, A. & HAASE, P. (2014): The Importance of the Regional Species Pool, Ecological Species Traits and Local Habitat Conditions for the Colonization of Restored River Reaches by Fish. – PLOS ONE V.9.

SUNDERMANN, A., STOLL, S. & HAASE, P. (2011): River restoration success depends on the species pool of the immediate surroundings. – Ecological Applications V. 21, No.6:1962-1971.

Schymanski, E. L.; Singer, H. P.; Slobodnik, J.; Ipolyi, I. M.; Oswald, P.; Krauss, M. et al. (2015) *Non-target screening with high-resolution mass spectrometry: critical review using a collaborativetrial on water analysis.* Anal. Bioanal. Chem. 407 (21)

UMWELTBUNDESAMT (2015) *Liste der nach GOW bewerteten Stoffe.* https://www.umweltbundesamt.de/sites/default/files/medien/5620/dokumente/listegowstoffeoh nepsm-20200728-homepage_kopie.pdf. Zuletzt abgerufen am 29.03.2021

VDFF (VERBAND DEUTSCHER FISCHEREIVERWALTUNGSBEAMTER UND FISCHEREIWISSENSCHAFTLER E.V.) —AK Fischereiliche Gewässerzustandsüberwachung (2009) *Handbuch zu fiBS -2.Auflage: Version 8.0.6-, Hilfestellungen und Hinweise zur sachgerechten Anwendung des fischbasierten Bewertungsverfahrens fiBS.*

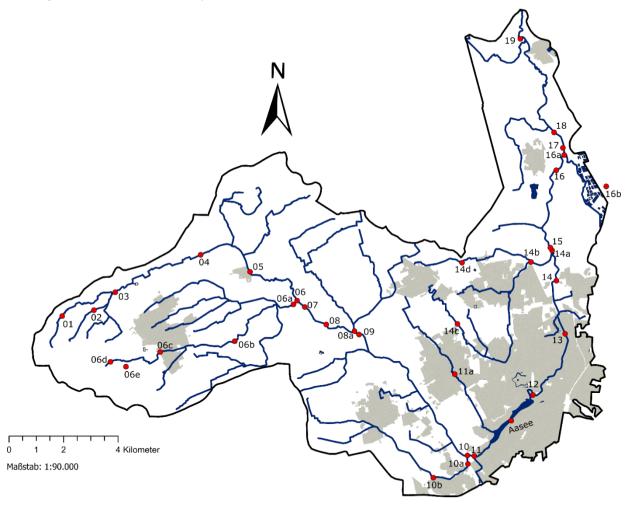
VREDENER BAUERNFAMILIEN, Blog vredener-bauernfamilien.de http://www.vredener-bauernfamilien.de/index.php/haeufige-fragen/198-wie-viel-guelle-wird-pro-jahr-auf-einem-m-ausgebracht Abgerufen am 28.03.2021

Wenzel, A.; Shemotyuk, L.: EQS Datasheet. Environmental Quality Standard Carbamazepine. In:Wenzel, A.; Schlich, K.; Shemotyuk, L.; Nendza, M. (2014) Revision der Umweltqualitätsnormen der Bundes-Oberflächengewässerverordnung nach Ende der Übergangsfrist für Richtlinie 2006/11/EG und Fortschreibung der europäischen Umweltqualitätsziele für prioritäre Stoffe. S. 306-342. Im Auftrag des Umweltbundesamtes, Dessau. FKZ 3712 28 232. Bericht 47/2015. Langfassung, 1164 Seiten. Schmallenberg und Luhnstedt

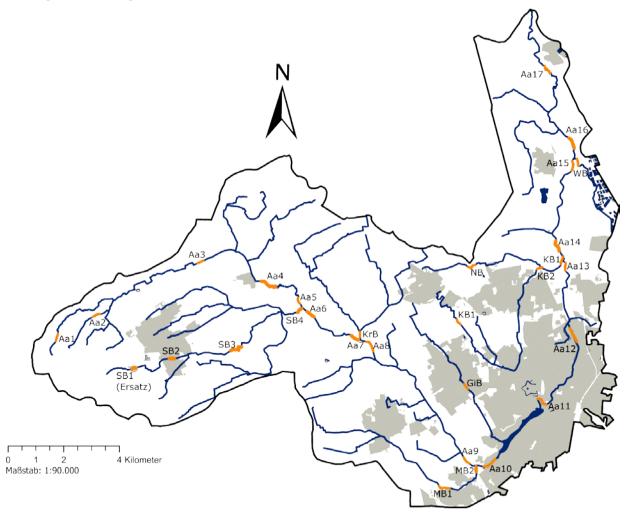
7 Anhang

Anhang 1:	Übersicht – Arbeitspakete und Meilensteine
Anhang 2:	Aktualisierte Probennahmestellenbezeichnungen
Anhang 3:	Probenahmestellen Hydrochemie
Anhang 4:	Probenahmestellen Befischung
Anhang 5:	Probenahmestellen Makrozoobenthos
Anhang 6:	Liste aller nachweisbaren Stoffe durch HPLC-HRMS
Anhang 7:	Renaturierung Hohenholte (realisierte Umgestaltung)
Anhang 8:	Vor-Ort-Parameter Stichtagsprobenahmen
Anhang 9:	Anionen und Kationen Stichtagsprobenahme
Anhang 10:	Konzentrationen der detektierten Targetsubstanzen der Stichtagsbeprobungen
Anhang 11:	Anionen und Kationen am Probensammler Roxeler Straße
Anhang 12:	Konzentration der detektierten Target-Substanzen am Probensammler Roxeler Straße
Anhang 13:	Anionen und Kationen am Probensammler Mündung
Anhang 14:	Konzentration der detektierten Target-Substanzen bei am Probensammler Mündung
Anhang 15:	Konzentration der Sartane an den Probensammlern
Anhang 16:	Übersicht Kleinkläranlagen mit Einleitung ins Oberflächengewässer im EZG Münstersche Aa
Anhang 17:	Paper Science of the Total Environment
Anhang 18:	Abstract digitaler Tagungsband Wasser 2020
Anhang 19:	Artikel wissen leben, November 2020
Anhang 20:	Artikel Münstersche Zeitung, 09.12.2020

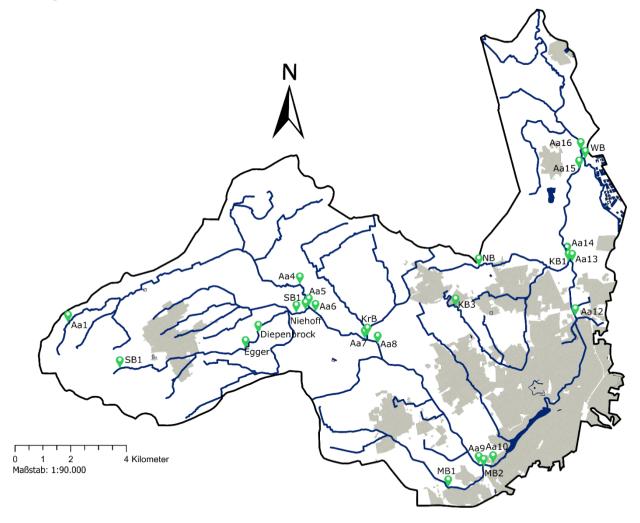
Anhang 1: Übersicht – Arbeitspakete und Meilensteine


AP1	Projektkoordination, Leitfaden, Datenbank und Berichterstattung
AP 1.1	Projektorganisation u. Abstimmung mit Auftraggeber
AP 1.2	Abstimmung u. Planung mit Kooperationspartner
AP 1.3	Dokumentation, Erstellung des Leitfadens u. Berichterstattung an die DBU
	A: Projektrelevante Termine liegen ausgearbeitet vor
Meilensteine	B: erster Zwischenbericht
AP 1	C: zweiter Zwischenbericht
	D: Datenbank, Leitfaden und Abschlussbericht
AP 2	Akteursarbeit u. Umsetzung WRRL
AP 2.1	Datenaustausch, Beiratssitzungen, Berichterstattung
AP 2.2	Entwicklung eines Entscheidungshilfesystems (Priorisierung von Maßnahmen
	durch Ergebnisauswertung der AP 3 und 5)
AP 2.3	Beitrag zu den Gewässerkonzepten (Die Ergebnisse aus AP 2.1 und AP 2.2
	sollen in die Aufstellung von Gewässerkonzepten einfließen)
AP 2.4	Gewässerentwicklung und Gewässerunterhaltung (Auf Basis der Projektergebnisse berät die AG WuB Maßnahmen und
7.1. 2.1	Unterhaltungslastträger)
Meilensteine	E und F: Kooperationstreffen Münstersche Aa
AP 2	G: Teilnahme WRRL-Symposium
AP 3	Habitatqualität und Wiederbesiedlungspotenzial
AP 3.1	Fischbestandsaufnahmen und Bewertung mit fiBS
AP 3.2	Makrozoobenthosaufnahmen und Bewertung mit Asterics
AP 3.3	Strahlwirkungsanalyse
Meilensteine	H: Daten aus dem ersten Projektjahr in den AP 3.1 und AP 3.2 liegen vor
AP 3	I: Strahlwirkungsanalyse
AP 4	Evaluation spezifischer Maßnahmen zur Habitatverbesserung
AP 4.1	Evaluation von (bestehenden) Trittsteinmaßnahmen (mittels Untersuchung
	Makrozoobenthos, Fische)
AP 4.2	Evaluation von (neuen) Trittsteinmaßnahmen (mittels Untersuchung
	Makrozoobenthos, Fische)
AP 4.3	Evaluation von (neuen) Trittsteinmaßnahmen in unterschiedlichen
	Kombinationen (mittels Untersuchung Makrozoobenthos, Fische)
Meilensteine AP 4	J-L: die Ergebnisse der Evaluation liegen ausgearbeitet vor; die dadurch gewonnenen Erkenntnisse sind mit den Akteuren diskutiert und können in das
	Entscheidungsunterstützungssystem eingebunden werden
AP 5	Hydrochemischer Einfluss auf die Habitatqualität
AP 5.1	Begleitende hydrochemische Untersuchungen zu AP 3.1, AP 3.2 und AP 4
AP 5.2	Hydrochemische Auswirkungen einer Gewässerrandstreifen-Teststrecke
AP 5.3	Dynamik und Frachten der Stoffe im EZG im hydrologischen Jahr
AP 5.4	Ortliche/zeitliche Einzeluntersuchungen im laufenden Projektfortschritt
AP 5.5	Datenauswertung und Ableitung eines passgenaueren Monitoringprogramms

M: Stichtagsprobenahmen im EZG sind erfolgt
N: Einwilligung eines Gewässeranrainers zur Errichtung der Teststrecke
O: Untersuchung der Teststrecke ist abgeschlossen
P: Probensammler mit Wasserstandslogger ist aufgestellt und funktionsfähig Q: Wochenmischproben an der Mündung für ein hydrologisches Jahr liegen vor R: Ergebnisse aus AP 5.4 und AP 5.5 sind für das Entscheidungsunterstützungssystem aufbereitet und verfügbar


Anhang 2: Probenstellenbezeichnungen

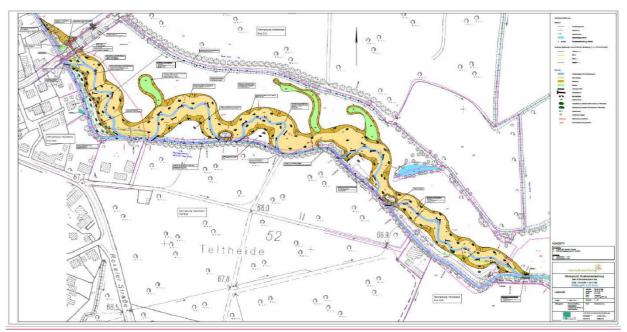
Bezeichnung Ökologie	Kurzform Hydrochemie	Vollbezeichnung Projekt	Hydrochemie	MZB	Fische
Aa1	01 KBBaum	01 KrummBBaumb	х	х	х
Aa2	02 PopAa	02 PopAa	х		х
Lanuv-Messstelle	03 MAKI	03 MAa Klute	х		
Aa3	04 MASäg	04 MAa Säg	х		х
Aa4	05 MAHoh	05 MAa Hohen	х	х	х
Aa5	06 MAvSB	06 MAa vor Schlb	х	х	х
SB4	06a SBMün	06a Schlb Münd	х	х	х
SB3	06b SBSchleit	06b Schlb Schleit	х		х
SB2	06c SBHavix	06c Schlb Havix	х		х
SB1Ersatz	06d LABhf	06d LasAa Bhf	х	х	х
SB1	06e Arningqu Lasb	06e Arningqu Lasb	х		
Aa6	07 MAnSB	07 MAa nach Schlb	х	х	х
Aa7	08 MAvKB	08 MAa vor KrummB	х	х	х
KrB	08a KBMün	08a KrummB Münd	х	х	х
Aa8	09 MAnKB	09 MAa nach KrummB	х	х	х
Aa9	10 MAvMBKump	10 MAa HausKump vor Meckelb	х	х	х
MB2	10a MBMün	10a Meckelb Münd	х	х	х
MB1	10b MBAmDill	10b MBDill	х		х
Aa10	11 MAnMBKump	11 MAa HausKump nach Meckelb	х	х	х
GiB	11a GBGiev	11a Gievenbach Gievenb	х		х
	Aasee	Aasee	х		
Aa11	12 MAMSWeW	12 MAa MSWesterholtW	х		х
Aa12	13 MANev	13 MAa Nevinghoff	х	х	х
Aa13	14 MAvKB	14 MAa HausCoerde vor Kinderb	х	х	х
KB3	14a KBMün	14a Kinderbach Münd	х	х	х
KB2	14b KreuzKanal	14b KreuzungGrevStrKanalStr	х		х
KB1	14c KBHorstm	14c Kinderbach Horstmarer Landw	х	х	х
NB	14d HLBGass	14d Hagelbach Gasselst	х	х	х
Aa14	15 MAnKB	15 MAa HausCoerde nach Kinderb		Х	х
15	16 MAvWB	16 MAa vor Wösteb	х	х	х
WB	16a WBMün	16a Wöstebach Münd	X	х	х
	16b Ablauf E1	16b Ablauf E1 (Rieselfelder)	х		
Aa16	17 MAnWB	17 MAa nach Wösteb	x	х	х
Aa17	18 MASprak	18 MAa Sprakel Laxen Brücke	x		х
neu	19 MASammGrev	19 MAa Sammler Greven/Mündung	х		


Anhang 3: Probenahmestellen Hydrochemie

Anhang 4: Befischungsstrecken

Anhang 5: Probenahmestellen Makrozoobenthos

Anhang 6: Liste aller nachweisbaren Stoffe durch HPLC-HRMS


Arrazin-desethyl Bentazon Arrazin-desethyl Bentazon Bentazon Bestizid oder TP Chlorotoluron Bestizid oder TP	1	Atronia	Doctivid aday TD
Bentazon Bentazon Bentazon Bentazon Bentazon Bestizid oder TP Chlorodazon Pestizid oder TP Chlorodazon Pestizid oder TP Chlorodazon Pestizid oder TP Destizid oder TP Pestizid oder TP Destizid oder TP Destizid oder TP Destizid oder TP Destizid oder TP Dischlorobenzamide Pestizid oder TP Dischlorobenzamide Pestizid oder TP Pestiz	1	Atrazia desettud	Pestizid oder TP
Bromacil Pestizid oder TP	-		
5 Bromoxynil Pestizid oder TP 6 Chloridazon Pestizid oder TP 7 Chlorotoluron Pestizid oder TP 8 Dicamba Pestizid oder TP 9 Dichlorobenzamide Pestizid oder TP 10 Dichloropop-P Pestizid oder TP 11 Dimethoste Pestizid oder TP 12 Imidacloprid Pestizid oder TP 13 Soproturon Pestizid oder TP 14 MCCA Pestizid oder TP 15 Mecoprop-P Pestizid oder TP 16 Metazachlor Pestizid oder TP 17 Pethoxamide Pestizid oder TP 18 Phenmedipham Pestizid oder TP 19 Tebuconazole Pestizid oder TP 10 Tebusconazole Pestizid oder TP 11 Tebusconazole Pestizid oder TP 12 Tebusconazole Pestizid oder TP 12 Tebusconazole Pestizid oder TP 12 Tebusconazole Pestizid oder TP			
Chloridazon Chloridazon Chlorotoluron Chloro			
Chlorotoluron Pestizid oder TP Dicamba Pestizid oder TP Dichoropenzamide Pestizid oder TP Destizid oder TP Destizid oder TP Destizid oder TP Destizid oder TP Pestizid oder TP Destizid oder TP D			
Dichlorobenzamide	7		
Dichlorobenzamide Dichlorprop-P Dichlorprop-P Pestizid oder TP Dichlorprop-P Pestizid oder TP Dichlorprop-P Pestizid oder TP Dimethoate Pestizid oder TP Dimethoate Pestizid oder TP Dimethoate Dichlorprop-P Pestizid oder TP District oder TP Destizid oder TP Dest	8		
Dichlorprop-P Dinethoate Dinethoa	9		
Dimethoate Pestizid oder TP			
midacloprid Pestizid oder TP storproturon Pestizid oder TP storproturon Pestizid oder TP Mecoprop-P Pestizid oder TP Mecoprop-P Pestizid oder TP Pethoxamide Pestizid oder TP Pethoxamide Pestizid oder TP Pethoxamide Pestizid oder TP Tehutylazin Pestizid oder TP Tehutylazin Pestizid oder TP Tehutylazin Pestizid oder TP Terbutylazin Arzneimitte/Droge oder TP Terbutylazin Arzn	11		
soproturon	12		
MCPA Mecoprop-P Pestizid oder TP Pethoxamide Pestizid oder TP Perpophenazone Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Pestizid oder	13	,	
Mecoprop-P Metazachlor Metazachlor Pestizid oder TP Pethoxamide Pestizid oder TP Tebuconazole Pestizid oder TP Tebuconazole Pestizid oder TP Tebutonazole Pestizid oder TP Pethoxamide Pestizid oder TP Pethoxamide Pestizid oder TP Pethoxylazin Pestizid oder TP Pethoxylazin Pestizid oder TP Responsibility of Respons	14	·	
Metazachlor Pethoxamide Pestizid oder TP Pethoxamide Pestizid oder TP Pethoxamide Pestizid oder TP Pestizid			
Pethoxamide Pestizid oder TP Pestizid od	16		
Penmedipham Pestizid oder TP	17		
Tebuconazole Pestizid oder TP	18		
Tembotrione Pestizid oder TP Terbutylazin Pestizid oder TP Pestizid oder TP Pestizid oder TP Reputylazin Pestizid oder TP Reputylazin Pestizid oder TP Reputylazin Pestizid oder TP Reputylazin Reputylazin Reputylazin Reputylazin Reputylazin Reputylazin Pestizid oder TP Reputylazin R	19	·	
Terbutylazin Pestizid oder TP Bezafibrat Arzneimittel/Droge oder TP Carbamazepin Arzneimittel/Droge oder TP Carbamazepin Arzneimittel/Droge oder TP Diclofenac Arzneimittel/Droge oder TP Foramsulfuron Arzneimittel/Droge oder TP Tormultel/Droge oder TP Arzneimittel/Droge oder TP Phenazone Arzneimittel/Droge oder TP Sulfadiazine Arzneimittel/Droge oder TP Sulfadiazine Arzneimittel/Droge oder TP Pestizid oder TP Azzoystrobin Pestizid oder TP Arzneimittel/Droge oder TP Pestizid oder TP Pestizi	20		
Rezafibrat Arzneimittel/Droge oder TP Carbamazepin Arzneimittel/Droge oder TP Carbamazepin Arzneimittel/Droge oder TP Carbamazepin Arzneimittel/Droge oder TP Carbamazepin Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Dictofenac Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Buprofen Arzneimittel/Droge oder TP Rezafibrat Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Phenazone Arzneimittel/Droge oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Pestizid oder TP Pes	21		
Caffeine Arzneimittel/Droge oder TP 24 Carbamazepin Arzneimittel/Droge oder TP 25 Diclofenac Arzneimittel/Droge oder TP 26 Foramsulfuron Arzneimittel/Droge oder TP 27 Ibuprofen Arzneimittel/Droge oder TP 28 Metoprolol Arzneimittel/Droge oder TP 29 Phenazone Arzneimittel/Droge oder TP 30 Propyphenazone Arzneimittel/Droge oder TP 31 Sulfadiazine Arzneimittel/Droge oder TP 32 Sulfamethoxazole Arzneimittel/Droge oder TP 33 Benzotriazole d4 Korrosionshemmer 34 3-Hydroxycarbofuran Pestizid oder TP 35 Acetamiprid Pestizid oder TP 36 Aldicarb Pestizid oder TP 37 alpha-Cypermethrin Pestizid oder TP 38 Bendiocarb Pestizid oder TP 39 Bendiocarb Pestizid oder TP 40 Bitertanol Pestizid oder TP 41 Boscalid Pestizid oder TP 42 Bromuconazol Pestizid oder TP 43 Buprofezin Pestizid oder TP 44 Carbaryl Pestizid oder TP 45 Bromuconazol Pestizid oder TP 46 Cardoarly Pestizid oder TP 47 Chlorfenvinphos Pestizid oder TP 48 Carbaryl Pestizid oder TP 49 Clomazone Pestizid oder TP 40 Clothianidin Pestizid oder TP 41 Boscalid Pestizid oder TP 42 Bromuconazol Pestizid oder TP 43 Buprofezin Pestizid oder TP 44 Carbaryl Pestizid oder TP 55 Carbonazim Pestizid oder TP 56 Cardusafos Pestizid oder TP 57 Chlorfenvinphos Pestizid oder TP 58 Carbendazim Pestizid oder TP 59 Clothianidin Pestizid oder TP 50 Cyzofamid Pestizid oder TP 50 Cyprodinil Pestizid oder TP 50 Cyprodinil Pestizid oder TP 50 Dichlorvos; DDVP Pestizid oder TP 50 Dichlorvos; DDVP Pestizid oder TP	22		
24 Carbamazepin Arzneimittel/Droge oder TP 25 Diclofenac Arzneimittel/Droge oder TP 26 Foramsulfuron Arzneimittel/Droge oder TP 27 Ibuprofen Arzneimittel/Droge oder TP 28 Metoprolol Arzneimittel/Droge oder TP 28 Metoprolol Arzneimittel/Droge oder TP 29 Phenazone Arzneimittel/Droge oder TP 30 Propynenazone Arzneimittel/Droge oder TP 31 Sulfadiazine Arzneimittel/Droge oder TP 32 Sulfamethoxazole Arzneimittel/Droge oder TP 33 Sulfadiazine Arzneimittel/Droge oder TP 34 3-Hydroxycarbofuran Pestizid oder TP 35 Acetamiprid Pestizid oder TP 36 Aldicarb Pestizid oder TP 37 alpha-Cypermethrin Pestizid oder TP 38 Azoxystrobin Pestizid oder TP 39 Bendiocarb Pestizid oder TP 40 Bitertanol Pestizid oder TP 41 Boscalid Pestizid oder TP 42 Bromuconazol Pestizid oder TP 43 Buprofezin Pestizid oder TP 44 Carbaryl Pestizid oder TP 45 Carbendazim Pestizid oder TP 46 Cardusafos Pestizid oder TP 47 Chlorfenvinphos Pestizid oder TP 48 Clofentezin Pestizid oder TP 49 Clomazone Pestizid oder TP 40 Clomazone Pestizid oder TP 41 Carbaryl Pestizid oder TP 42 Carbandarin Pestizid oder TP 43 Clofentezin Pestizid oder TP 44 Carbaryl Pestizid oder TP 55 Cyprodinil Pestizid oder TP 65 Cyprodinil Pestizid oder TP 76 Cypermethrin Pestizid oder TP 77 Chlorfenvinphos Pestizid oder TP 78 Clofentezin Pestizid oder TP 88 Clofentezin Pestizid oder TP 89 Clomazone Pestizid oder TP 80 Clomazone Pestizid oder TP 80 Clofentezin Pestizid oder TP 81 Cyazofamid Pestizid oder TP 82 Cyprodinil Pestizid oder TP 83 Cymoxanil Pestizid oder TP 84 Cypermethrin Pestizid oder TP 85 Cyprodinil Pestizid oder TP 86 Dichotvos; DDVP Pestizid oder TP 87 Dichlorvos; DDVP Pestizid oder TP 88 Dichotvos; DDVP Pestizid oder TP 89 Dicrotophos Pestizid oder TP	23		
Diclofenac Arzneimittel/Droge oder TP Foramsulfuron Arzneimittel/Droge oder TP Ibuprofen Arzneimittel/Droge oder TP Ibuprofen Arzneimittel/Droge oder TP Response Arzneimittel/Droge oder TP Phenazone Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Phenazone Arzneimittel/Droge oder TP A	24		
Foramsulfuron Arzneimittel/Droge oder TP Ibuprofen Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Phenazone Arzneimittel/Droge oder TP Arzneimittel/D	25		
Ibuprofen	26		
Metoprolol Arzneimittel/Droge oder TP Phenazone Arzneimittel/Droge oder TP Rropyphenazone Arzneimittel/Droge oder TP Sulfadiazine Arzneimittel/Droge oder TP Sulfamethoxazole Pestizid oder TP Sulfamethoxazore Pestizid oder TP Sul	27		
Phenazone Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Sulfadiazine Arzneimittel/Droge oder TP Sulfadiazine Arzneimittel/Droge oder TP Sulfadiazine Arzneimittel/Droge oder TP Sulfamethoxazole Arzneimittel/Droge oder TP Arzneimit	28	•	
Propyphenazone Arzneimittel/Droge oder TP Sulfadiazine Arzneimittel/Droge oder TP Sulfamethoxazole Arzneimittel/Droge oder TP Sulfamethoxazole Arzneimittel/Droge oder TP Berzizid oder TP Pestizid oder TP Arzneimittel/Droge oder TP Pestizid oder TP Pestizid oder TP Arzneimittel/Droge oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Baromuconazol Pestizid oder TP Bromuconazol Pestizid oder TP Arzneimittel/Droge oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Arzneimittel/Droge oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Arzneimitel/Droge oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Chlorfenvinphos Pestizid oder TP Colomazone Pestizid oder TP	29	,	
Sulfadiazine Sulfamethoxazole Sulfamethoxazole Arzneimittel/Droge oder TP A	30		
Sulfamethoxazole Benzotriazole d4 Sorrosionshemmer A-tydroxycarbofuran Bestizid oder TP Acetamiprid Acetamiprid Aldicarb Acetamiprid Azoxystrobin Bestizid oder TP Carburdazin Bestizid oder TP Bestizid oder TP Carburdazin Pestizid oder TP Colomazone Pestizid oder TP Colomazone Pestizid oder TP Cyzorfamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cyprodinil Pestizid oder TP Cyprodinil Pestizid oder TP	31		
Benzotriazole d4 3-Hydroxycarbofuran Pestizid oder TP Acetamiprid Pestizid oder TP Bisham Pestizid oder TP Carbaryl Carbaryl Pestizid oder TP Carbaryl Pestizid oder TP Carbaryl Pestizid oder TP Carbaryl Carbaryl Pestizid oder TP Carbaryl Carbaryl Pestizid oder TP Carbaryl Carbaryl Carbaryl Pestizid oder TP Collorfenvinphos Pestizid oder TP Collorfenvinphos Pestizid oder TP Collofianidin Pestizid oder TP Colothianidin Pestizid oder TP Coyaofamid Pestizid oder TP Cyazofamid Pestizid oder TP Cyazofamid Pestizid oder TP Cyazofamid Pestizid oder TP Cyazofamid Pestizid oder TP Cyprodinil Pestizid oder TP Cyprodinil Pestizid oder TP Pestizid oder TP Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP	32		
Acetamiprid Pestizid oder TP Acetamiprid Pestizid oder TP Alpha-Cypermethrin Pestizid oder TP Bas Azoxystrobin Pestizid oder TP Bas Bendiocarb Pestizid oder TP Bitertanol Pestizid oder TP Boscalid Pestizid oder TP Boscalid Pestizid oder TP Boscalid Pestizid oder TP Aceta Bromuconazol Pestizid oder TP Aceta Buprofezin Pestizid oder TP Aceta Carbaryl Pestizid oder TP Carbaryl Pestizid oder TP Carbaryl Pestizid oder TP Cardusafos Pestizid oder TP Chlorfenvinphos Pestizid oder TP Conductor	33		
Acetamiprid Pestizid oder TP Aldicarb Pestizid oder TP Aldicarb Pestizid oder TP Azoxystrobin Pestizid oder TP Bendicarb Pestizid oder TP Bitertanol Pestizid oder TP Boscalid Pestizid oder TP Boscalid Pestizid oder TP Ald Boscalid Pestizid oder TP Ald Carbaryl Pestizid oder TP Cardusafos Pestizid oder TP Condusafos Pestizid oder TP Condusafon Pestizid oder TP C	34	3-Hydroxycarbofuran	Pestizid oder TP
alpha-Cypermethrin Pestizid oder TP Bas Azoxystrobin Pestizid oder TP Bas Azoxystrobin Pestizid oder TP Bas Bendiocarb Pestizid oder TP Bas Bendiocarb Pestizid oder TP Bas Bendiocarb Pestizid oder TP Bas Bitertanol Pestizid oder TP Bas Boscalid Pestizid oder TP Bas Buprofezin Pestizid oder TP Bas Buprofezin Pestizid oder TP Bas Buprofezin Pestizid oder TP Bas Carbanyl Pestizid oder TP Bas Cardusafos Pestizid oder TP Bas Clofentevinghos Pestizid oder TP Bas Clofentezin Pestizid oder TP Bas Clofentevinghos Pestizid oder TP Bas Clofentevinghos Pestizid oder TP Bas Clofentevinghos Pestizid oder TP Bas Cyazofamid Pestizid oder TP Bas Cyprosanil Pestizid oder TP Bas Cymoxanil Pestizid oder TP Bas Cyprodinil Pestizid oder TP Bas Cyprodinil Pestizid oder TP Bas Diclobutrazol Pestizid oder TP	35		Pestizid oder TP
Azoxystrobin Pestizid oder TP Bendiocarb Pestizid oder TP Bendiocarb Pestizid oder TP Bendiocarb Pestizid oder TP Bestizid oder TP Boscalid Pestizid oder TP Boscalid Pestizid oder TP Buprofezin Pestizid oder TP Carbaryl Pestizid oder TP Carbaryl Pestizid oder TP Cardusafos Pestizid oder TP Chlorfenvinphos Pestizid oder TP Clomazone Pestizid oder TP Clomazone Pestizid oder TP Colothianidin Pestizid oder TP Cyazofamid Pestizid oder TP Cygromarid Pestizid oder TP Cygromarid Pestizid oder TP Cygromarid Pestizid oder TP Cygromarid Pestizid oder TP Cypermethrin Pestizid oder	36	Aldicarb	Pestizid oder TP
Azoxystrobin Pestizid oder TP Bendiocarb Pestizid oder TP Bendiocarb Pestizid oder TP Bestizid oder TP Besti	37	alpha-Cypermethrin	Pestizid oder TP
Bitertanol Pestizid oder TP Boscalid Pestizid oder TP Bromuconazol Pestizid oder TP Bromuconazon Pestizid oder TP Bromuconazone Pe	38		Pestizid oder TP
Boscalid Pestizid oder TP Bromuconazol Pestizid oder TP Bromuconazol Pestizid oder TP But Carbaryl Pestizid oder TP Carbaryl Pestizid oder TP Carbardazim Pestizid oder TP Cardusafos Pestizid oder TP Chlorfenvinphos Pestizid oder TP Clomazone Pestizid oder TP Clomazone Pestizid oder TP Cyazofamid Pestizid oder TP Cyazofamid Pestizid oder TP Cygromanid Pestizid oder	39	Bendiocarb	Pestizid oder TP
Bromuconazol Buprofezin Pestizid oder TP Carbaryl Pestizid oder TP Carbendazim Pestizid oder TP Cardusafos Pestizid oder TP Chlorfenvinphos Pestizid oder TP Clofentezin Pestizid oder TP Clomazone Pestizid oder TP Clothianidin Pestizid oder TP Cyazofamid Pestizid oder TP Cygromanid Pestizid oder TP Cypromanid Pestizid oder TP	40	Bitertanol	Pestizid oder TP
Buprofezin Pestizid oder TP 44 Carbaryl Pestizid oder TP 45 Carbendazim Pestizid oder TP 46 Cardusafos Pestizid oder TP 47 Chlorfenvinphos Pestizid oder TP 48 Clofentezin Pestizid oder TP 49 Clomazone Pestizid oder TP 50 Clothianidin Pestizid oder TP 51 Cyazofamid Pestizid oder TP 52 Cyflufenamid Pestizid oder TP 53 Cymoxanil Pestizid oder TP 54 Cypermethrin Pestizid oder TP 55 Cyprodinil Pestizid oder TP 56 Diazinon Pestizid oder TP 57 Dichlorvos; DDVP Pestizid oder TP 58 Diclobutrazol Pestizid oder TP 59 Dicrotophos Pestizid oder TP	41	Boscalid	Pestizid oder TP
44CarbarylPestizid oder TP45CarbendazimPestizid oder TP46CardusafosPestizid oder TP47ChlorfenvinphosPestizid oder TP48ClofentezinPestizid oder TP49ClomazonePestizid oder TP50ClothianidinPestizid oder TP51CyazofamidPestizid oder TP52CyflufenamidPestizid oder TP53CymoxanilPestizid oder TP54CypermethrinPestizid oder TP55CyprodinilPestizid oder TP56DiazinonPestizid oder TP57Dichlorvos; DDVPPestizid oder TP58DiclobutrazolPestizid oder TP59DicrotophosPestizid oder TP	42	Bromuconazol	Pestizid oder TP
Carbendazim Pestizid oder TP Cardusafos Pestizid oder TP Chlorfenvinphos Pestizid oder TP Clofentezin Pestizid oder TP Clomazone Pestizid oder TP Clomazone Pestizid oder TP Clothianidin Pestizid oder TP Cyazofamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cypermethrin Pestizid oder TP Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Diazinon Pestizid oder TP	43	Buprofezin	Pestizid oder TP
46CardusafosPestizid oder TP47ChlorfenvinphosPestizid oder TP48ClofentezinPestizid oder TP49ClomazonePestizid oder TP50ClothianidinPestizid oder TP51CyazofamidPestizid oder TP52CyflufenamidPestizid oder TP53CymoxanilPestizid oder TP54CypermethrinPestizid oder TP55CyprodinilPestizid oder TP56DiazinonPestizid oder TP57Dichlorvos; DDVPPestizid oder TP58DiclobutrazolPestizid oder TP59DicrotophosPestizid oder TP	44	Carbaryl	Pestizid oder TP
Chlorfenvinphos Pestizid oder TP Clomazone Pestizid oder TP Clomazone Pestizid oder TP Clomazone Pestizid oder TP Clomazone Pestizid oder TP Clothianidin Pestizid oder TP Cyazofamid Pestizid oder TP Cyglufenamid Pestizid oder TP Cymoxanil Pestizid oder TP Cypermethrin Pestizid oder TP Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Diazinon Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP	45	Carbendazim	Pestizid oder TP
Clofentezin Pestizid oder TP Clomazone Clothianidin Pestizid oder TP Cyazofamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cymoxanil Pestizid oder TP Cypermethrin Pestizid oder TP Cypermethrin Pestizid oder TP Cyperdinil Pestizid oder TP Diazinon Pestizid oder TP	46	Cardusafos	Pestizid oder TP
Clomazone Pestizid oder TP Clothianidin Pestizid oder TP Cyazofamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cymoxanil Pestizid oder TP Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Cyprodinil Pestizid oder TP Coprodinil Pestizid oder T	47	Chlorfenvinphos	Pestizid oder TP
Clothianidin Pestizid oder TP Cyazofamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cymoxanil Pestizid oder TP Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Diazinon Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP	48	Clofentezin	Pestizid oder TP
Cyazofamid Pestizid oder TP Cyflufenamid Pestizid oder TP Cymoxanil Pestizid oder TP Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Coprodinil Pestizid oder TP	49	Clomazone	Pestizid oder TP
Cyflufenamid Pestizid oder TP Cymoxanil Pestizid oder TP Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Copermethrin Pestizid oder TP Copermethri	50	Clothianidin	Pestizid oder TP
Cymoxanil Pestizid oder TP Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Coprodinil Pestizid oder TP	51	Cyazofamid	Pestizid oder TP
Cypermethrin Pestizid oder TP Cyprodinil Pestizid oder TP Diazinon Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP Diclobutrazol Pestizid oder TP	52		Pestizid oder TP
Cyprodinil Pestizid oder TP Diazinon Pestizid oder TP Dichlorvos; DDVP Pestizid oder TP Diclobutrazol Pestizid oder TP Dicrotophos Pestizid oder TP Pestizid oder TP	53	Cymoxanil	Pestizid oder TP
56DiazinonPestizid oder TP57Dichlorvos; DDVPPestizid oder TP58DiclobutrazolPestizid oder TP59DicrotophosPestizid oder TP	54	Cypermethrin	Pestizid oder TP
57Dichlorvos; DDVPPestizid oder TP58DiclobutrazolPestizid oder TP59DicrotophosPestizid oder TP	55	Cyprodinil	Pestizid oder TP
Diclobutrazol Pestizid oder TP Dicrotophos Pestizid oder TP	56	Diazinon	Pestizid oder TP
59 Dicrotophos Pestizid oder TP	57	· ·	Pestizid oder TP
	58	Diclobutrazol	
Diethofencarb Pestizid oder TP	59	·	Pestizid oder TP
	60	Diethofencarb	Pestizid oder TP

Dimoxystrobin Pestizid oder TP	61	Difenoconazol	Pestizid oder TP
Disulfoton-sulfon Pestizid oder TP			
Disulfoton-suffood Pestizid oder TP		•	
Diuron Pestizid oder TP			
66 Epoxiconazol Pestizid oder TP 67 Ethiofencarb Pestizid oder TP 68 Ethion Pestizid oder TP 68 Ethion Pestizid oder TP 69 Ethoprophos Pestizid oder TP 71 Etoxazole Pestizid oder TP 72 Etoxazole Pestizid oder TP 73 Famoxadon Pestizid oder TP 74 Fenamidon Pestizid oder TP 75 Fenamidon Pestizid oder TP 76 Fenamiphos sulfon Pestizid oder TP 77 Fenamidon Pestizid oder TP 78 Fenamiphos sulfon Pestizid oder TP 79 Fenamiphos sulfon Pestizid oder TP 70 Fenamiphos sulfoxid Pestizid oder TP 71 Fenamiphos sulfoxid Pestizid oder TP 72 Fenamiphos sulfoxid Pestizid oder TP 73 Fenamiphos sulfoxid Pestizid oder TP 74 Fenamid Pestizid oder TP 75 Fenamiphos sulfoxid Pestizid oder TP 76 Fenamiphos sulfoxid Pestizid oder TP 76 Fenamiphos sulfoxid Pestizid oder TP 77 Fenamid Pestizid oder TP 78 Fenoxycarb Pestizid oder TP 79 Fenoxycarb Pestizid oder TP 70 Fenoxycarb Pestizid oder TP 71 Fenoxycarb Pestizid oder TP 71 Fenoxycarb Pestizid oder TP 72 Fenoxycarb Pestizid oder TP 73 Fenoxycarb Pestizid oder TP 74 Fenoxycarb Pestizid oder TP 75 Fenoxycarb Pestizid oder TP 76 Fenoxycarb Pestizid oder TP 76 Fenoxycarb Pestizid oder TP 77 Fenoxycarb Pestizid oder TP 78 Fenoxycarb Pestizid oder TP 78 Fenoxycarb Pestizid oder TP 79 Fenoxycarb Pestizid oder TP 70 Fenoxycarb Pestizid oder TP 70 Fenoxycarb Pestizid oder TP 70 Fenoxycarb Pestizid oder TP 71 Fenoxycarb Pestizid oder TP 71 Fenoxycarb Pestizid oder TP 72 Fenoxycarb Pestizid oder TP 73 Fenoxycarb Pestizid oder TP 74 Fenoxycarb Pestizid oder TP 75 Fenoxycarb Pestizid oder TP 75 Fenoxycarb Pestizid oder TP 76 Fenoxycarb Pestizid oder TP 77 Fenoxycarb Pestizid oder TP 78 Fenoxycarb Pestizid oder TP 79 Fenoxycarb Pestizid oder TP 70 Fenoxycarb Pestizid oder TP 70 Fenoxycarb Pestizid oder TP 70 Fenoxycarb Pestizid oder TP 71 Fenoxycarb Pestizid oder TP 71 Fenoxycarb Pestizid oder TP 71 Fenoxycarb Pestizid oder TP 72 Fenoxycarb Pestizid oder TP 73 Fenoxycarb Pestizid oder TP 74 Fenoxycarb Pestizid oder TP 75 Fenoxycarb Pestizid oder TP 75 Fenoxycarb Pestizid oder TP 76 Fenoxycarb Pestizid o	_		
cithiofencarb 8thion 9estizid oder TP 10 tofenprox Pestizid oder TP 11 toxazole Pestizid oder TP 12 tofenprox Pestizid oder TP 12 tofenprox Pestizid oder TP 12 tofenprox Pestizid oder TP 13 famosaton Pestizid oder TP 14 seamidon Pestizid oder TP 15 fenamidon Pestizid oder TP 16 pestizid oder TP 17 fenamighos sulfon Pestizid oder TP 18 pestizid oder TP 19 fenamighos sulfon Pestizid oder TP 19 fenamighos sulfon Pestizid oder TP 10 fenexamid Pestizid oder TP 11 fenexamid Pestizid oder TP 12 fenexamid Pestizid oder TP 13 feneropyroximat Pestizid oder TP 14 feneropyroximat Pestizid oder TP 15 feneropyroximat Pestizid oder TP 16 feneropyroximat Pestizid oder TP 17 feneropyroximat Pestizid oder TP 18 feneropyroximat Pestizid oder TP 19 festizid oder TP 10 fereropyroximat Pestizid oder TP 10 ferer			
Esthorophos Pestizid oder TP Tetosazole Pestizid oder TP Titosazole Pestizid oder TP T			
Sthoprophos			
tofenprox totazole tetoxazole pestizid oder TP tetoxazole pestizid oder TP tetoxazole pestizid oder TP setizid oder TP fenamighos pestizid oder TP fenamighos pestizid oder TP fenamighos pestizid oder TP fenamighos sulfon pestizid oder TP pestizid oder TP fenamighos sulfon pestizid oder TP pe			
toxazole trimfos Pestizid oder TP Etrimfos Pestizid oder TP Famoxadon Pestizid oder TP Fenamiphos Pestizid oder TP Fenamiphos sulfon Pestizid oder TP Festizid oder		, ,	
trimfos Pestizid oder TP Farnoxadon Pestizid oder TP Farnoxadon Pestizid oder TP Fenamidon Pestizid oder TP Fenamidon Pestizid oder TP Fenamidon Pestizid oder TP Fenamiphos sulfon Pestizid oder TP Fenamiphos sulfoxid Pestizid oder TP Fenanycarb Pestizid oder TP Festizid oder TP Fe		·	
Famindon Pestizid oder TP Fenamighos Pestizid oder TP Fenamighos Sulfon Pestizid oder TP Fenbuconazol Pestizid oder TP Fenpyramine Pestizid oder TP Festizid oder TP Festi			
Fenamiphos Pestizid oder TP Fenamiphos sulfon Pestizid oder TP Fenamiphos sulfon Pestizid oder TP Fenamiphos sulfoxid Pestizid oder TP Fenexamid Pestizid oder TP Fenexamine Pestizid oder TP Fenexamine Pestizid oder TP Fenexamine Pestizid oder TP Fenexamine Fenexamine Fenexamine Fenexamine Pestizid oder TP Fenexamine Ferexamine Fe			
Fenamiphos Fenamiphos sulfon Fenamiphos sulfon Fenamiphos sulfon Pestizid oder TP Fenamiphos sulfoni Pestizid oder TP Fenamiphos sulfoni Pestizid oder TP Fenamiphos sulfoni Pestizid oder TP Fenexamid Feneyroximat Pestizid oder TP Festizid oder			
Fenamiphos sulfon Pestizid oder TP Penamiphos sulfonid Pestizid oder TP Penamiphos sulfoxid Pestizid oder TP Penamiphos sulfoxid Pestizid oder TP Penamiphos sulfoxid Pestizid oder TP Pestizid o			
Fenamiphos sulfoxid Pestizid oder TP Rehuconazol Pestizid oder TP Fenhexamid Pestizid oder TP Fenrexamid Pestizid oder TP Pestizid oder TP Rehexamid Pestizid oder TP Rehexamid Pestizid oder TP Rehyrozarb Pestizid oder TP Rehyrozarmine Rehyrozarmine Rehyrozarmine Rehyrozarmine Re			
Fenbuconazol Pestizid oder TP Fenhexamid Pestizid oder TP Fenhexamid Pestizid oder TP Fenbexamid Pestizid oder TP Festizid od		·	
Fenbexamid Pestizid oder TP 80 Fenoxycarb Pestizid oder TP 81 Fenpropimorph Pestizid oder TP 82 Fenpyrazamine Pestizid oder TP 83 Fenpyroximat Pestizid oder TP 84 Fenpyroximat Pestizid oder TP 85 Fenpyroximat Pestizid oder TP 86 Formetanat HCl Pestizid oder TP 87 Fostbiazate Pestizid oder TP 88 Furalaxyl Pestizid oder TP 89 Heptenophos Pestizid oder TP 80 Hexcanazol Pestizid oder TP 80 Hexptonagono Pestizid oder TP 81 Heythiazox Pestizid oder TP 82 Imazalll Pestizid oder TP 83 Indoxacarb Pestizid oder TP 84 Imazalll Pestizid oder TP 85 Indoxacarb Pestizid oder TP 86 Imazalll Pestizid oder TP 87 Imazalll Pestizid oder TP 88 Heytenophos Pestizid oder TP 89 Hexptonagono Pestizid oder TP 90 Imazalll Pestizid oder TP 91 Imazalll Pestizid oder TP 92 Imazalll Pestizid oder TP 93 Indoxacarb Pestizid oder TP 94 Iprovalicarb Pestizid oder TP 95 Isofenphos Pestizid oder TP 96 Isoprocarb Pestizid oder TP 97 Linuron Pestizid oder TP 98 Mandipropamid Pestizid oder TP 99 Mecarbam Pestizid oder TP 90 Mecarbam Pestizid oder TP 100 Mepanipyrim Pestizid oder TP 101 Metamitron Pestizid oder TP 102 Methidathion Pestizid oder TP 103 Methiocarb Sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 104 Methiocarb Sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 105 Methiozarb Sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 106 Methoxyfenozid Pestizid oder TP 107 Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 100 Methiocarb Sulfon (Mercaptodimethur-sulfoxid) Pestizid oder TP 101 Paraoxon-ethyl Pestizid oder TP 102 Pencycuron Pestizid oder TP 103 Pendimethalin Pestizid oder TP 104 Penoxsulam Pestizid oder TP 105 Phenthoate Pestizid oder TP 106 Phosphamidon Pestizid oder TP 107 Phosphamidon Pestizid oder TP 108 Pirmiphos-methyl Pestizid oder TP 109 Pirmiphos-methyl Pestizid oder TP 110 Pirmiphos-methyl Pestizid oder TP 1110 Pirmiphos-methyl Pestizid oder TP 1120 Prochloraz Pestizid oder TP 1120 Prochloraz Pestizid oder TP		Fenamiphos sulfoxid	
Fenoxycarb Fenoxycarb Fenoxycarb Fenoxycarb Fenoxycarb Fenorpimorph Pestizid oder TP Pestizid oder TP Pestizid oder TP Responsimant Responsimant			
Fenpropimorph Pestizid oder TP			
Fenpyrazamine Pestizid oder TP 83 Fenpyroximat Pestizid oder TP 84 Flusiazol Pestizid oder TP 85 Flutriafol Pestizid oder TP 86 Formetanat HCl Pestizid oder TP 88 Furalaxyl Pestizid oder TP 88 Furalaxyl Pestizid oder TP 89 Heptenophos Pestizid oder TP 91 Hexaconazol Pestizid oder TP 92 Imazalil Pestizid oder TP 93 Indoxacarb Pestizid oder TP 94 Iprovalicarb Pestizid oder TP 95 Isofenphos Pestizid oder TP 96 Isoprocarb Pestizid oder TP 97 Linuron Pestizid oder TP 98 Mandipropamid Pestizid oder TP 99 Mecarbam Pestizid oder TP 101 Metamitron Pestizid oder TP 102 Methicarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 103 Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP 104 Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP 105 Methiozarb Pestizid oder TP 106 Methoxyfenozid Pestizid oder TP 107 Methiozarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 109 Metribuzin Pestizid oder TP 101 Metrouzid Pestizid oder TP 102 Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP 103 Methiocarb Pestizid oder TP 104 Metribuzin Pestizid oder TP 105 Metribuzin Pestizid oder TP 106 Metroxyfenozid Pestizid oder TP 107 Metroxyfenozid Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 100 Pestizid oder TP 101 Pencycuron Pestizid oder TP 102 Pencycuron Pestizid oder TP 103 Pendimethalin Pestizid oder TP 104 Penoxulam Pestizid oder TP 105 Phenthoate Pestizid oder TP 106 Phosplamidon Pestizid oder TP 107 Phosplamidon Pestizid oder TP 108 Pirmicarb-desmethyl Pestizid oder TP 109 Prophiorac Pestizid oder TP 110 Pirmiphos-methyl Pestizid oder TP 111 Pirmiphos-methyl Pestizid oder TP 112 Pirmiphos-methyl Pestizid oder TP 113 Pirmiphos-methyl Pestizid oder TP 114 Pirmiphos-methyl Pestizid oder TP 115 Phosphamidon Pestizid oder TP 116 Phosphamidon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirmiphos-methyl Pestizid oder TP 119 Pirmiphos-me	80	,	Pestizid oder TP
Fenpyroximat Pestizid oder TP A Flustiazol Pestizid oder TP Flutriafol Pestizid oder TP Formetanat HCl Pestizid oder TP Formetanat HCl Pestizid oder TP Fosthiazate Pestizid oder TP Fosthiazate Pestizid oder TP Fosthiazate Pestizid oder TP Pestizid oder TP Pestizid oder TP Heytenophos Pestizid oder TP Heythiazox Pestizid oder TP Hexythiazox Pestizid oder TP Imazalil Pestizid oder TP Imazalil Pestizid oder TP Imazalil Pestizid oder TP Soft provalicarb Pestizid oder TP Fostizid oder TP Involaicarb Pestizid oder TP Soft provalicarb Pestizid oder TP Fostizid oder TP Fostizid oder TP Inuron Pestizid oder TP Metarabam Pestizid oder TP Metarabam Pestizid oder TP Metarabam Pestizid oder TP Methicarb Pestizid oder TP Methicarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP Methicarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP Methicarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP Methicarb Pestizid oder TP Methicarb Pestizid oder TP Methicarb Pestizid oder TP Methocarb Pestizid oder TP Methocarb Pestizid oder TP Methocarb Pestizid oder TP Methocarb Pestizid oder TP Pes	81	Fenpropimorph	
Flusilazol Pestizid oder TP Formetanat HCI Pestizid oder TP Fosthiazate Pestizid oder TP Restizid oder TP Fosthiazate Pestizid oder TP Restizid oder TP	82	Fenpyrazamine	Pestizid oder TP
Flutriafol Pestizid oder TP 86 Formetanat HCI Pestizid oder TP 87 Fosthiazate Pestizid oder TP 88 Furalaxyl Pestizid oder TP 89 Heptenophos Pestizid oder TP 90 Hexaconazol Pestizid oder TP 91 Heythiazox Pestizid oder TP 92 Imazalil Pestizid oder TP 93 Indoxacarb Pestizid oder TP 94 Iprovalicarb Pestizid oder TP 95 Isofenphos Pestizid oder TP 96 Isoprocarb Pestizid oder TP 97 Linuron Pestizid oder TP 98 Mandipropamid Pestizid oder TP 99 Mecarbam Pestizid oder TP 100 Mepanipyrim Pestizid oder TP 101 Metamitron Pestizid oder TP 102 Methiocarb Pestizid oder TP 103 Methiocarb Pestizid oder TP 104 Methiocarb Pestizid oder TP 105 Methiocarb Pestizid oder TP 106 Methiocarb Pestizid oder TP 107 Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 100 Methocarb Pestizid oder TP 101 Methiocarb Pestizid oder TP 102 Methiocarb Pestizid oder TP 103 Methiocarb Pestizid oder TP 104 Methiocarb Pestizid oder TP 105 Methiocarb Pestizid oder TP 106 Methoxyfenozid (Mercaptodimethur-sulfoxid) Pestizid oder TP 107 Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 110 Peroxoural Pestizid oder TP 111 Paraoxon-ethyl Pestizid oder TP 112 Penoxulam Pestizid oder TP 113 Pendimethalin Pestizid oder TP 114 Penoxulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosphamidon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 110 Pirimiphos-methyl Pestizid oder TP 111 Pirimiphos-methyl Pestizid oder TP 112 Peroxoural Pestizid oder TP 115 Phosphamidon Pestizid oder TP 116 Phosphamidon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimiphos-methyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 120 Proxoloraz Pestizid oder TP	83	Fenpyroximat	Pestizid oder TP
Formetanat HCI Pestizid oder TP Fosthiazate Pestizid oder TP Fosthiazate Pestizid oder TP Fosthiazate Pestizid oder TP Fosthiazate Pestizid oder TP Pestizid oder TP Pestizid oder TP Heptenophos Pestizid oder TP Hexpenophos Pestizid oder TP Hexpenophos Pestizid oder TP Hexpenophos Pestizid oder TP Imazalil	84	Flusilazol	Pestizid oder TP
Fosthiazate Pestizid oder TP 88 Furalaxyl Pestizid oder TP 89 Heptenophos Pestizid oder TP 90 Hexaconazol Pestizid oder TP 91 Hexythiazox Pestizid oder TP 92 Imazalii Pestizid oder TP 93 Indoxacarb Pestizid oder TP 94 Iprovalicarb Pestizid oder TP 95 Isofenphos Pestizid oder TP 96 Isoprocarb Pestizid oder TP 97 Linuron Pestizid oder TP 98 Mandipropamid Pestizid oder TP 99 Mecarbam Pestizid oder TP 100 Mepanipyrim Pestizid oder TP 101 Metamitron Pestizid oder TP 102 Methiocarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 103 Methiocarb-sulfon (Mercaptodimethur-sulfoxid) Pestizid oder TP 105 Methiocarb-sulfon (Mercaptodimethur-sulfoxid) Pestizid oder TP 106 Methoxyfenozid Pestizid oder TP 107 Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 100 Pestizid oder TP 101 Persoxon-ethyl Pestizid oder TP 102 Pestizid oder TP 103 Pestizid oder TP 104 Pestizid oder TP 105 Pestizid oder TP 106 Pestizid oder TP 107 Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 110 Persoxon-ethyl Pestizid oder TP 111 Paraoxon-ethyl Pestizid oder TP 112 Penoxulam Pestizid oder TP 113 Pendimethalin Pestizid oder TP 114 Penoxulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosphamidon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimicarb-desmethyl Pestizid oder TP 110 Pestizid oder TP 111 Pestizid oder TP 112 Peroxulam Pestizid oder TP 113 Pentincarb-desmethyl Pestizid oder TP 114 Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosphamidon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimicarb-desmethyl Pestizid oder TP 120 Prochloraz Pestizid oder TP	85	Flutriafol	Pestizid oder TP
Furalaxyl Pestizid oder TP Restizid oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP Sofrenhos Pestizid oder TP Sofrenhos Pestizid oder TP Pestizid oder TP Pestizid oder TP Restizid oder TP Pestizid oder TP Restizid oder TP Restizid oder TP Pestizid oder TP Restizid oder TP Pestizid oder TP Restizid oder TP	86	Formetanat HCl	Pestizid oder TP
Heptenophos Pestizid oder TP	87	Fosthiazate	Pestizid oder TP
Hexaconazol Pestizid oder TP	88	Furalaxyl	Pestizid oder TP
Hexaconazol Pestizid oder TP Hexythiazox Pestizid oder TP Imazalii Pestizid oder TP Imazalii Pestizid oder TP Indoxacarb Pestizid oder TP Indoxacarb Pestizid oder TP Indoxacarb Pestizid oder TP Iprovalicarb Pestizid oder TP Iprovalicarb Pestizid oder TP Iprovalicarb Pestizid oder TP Indoxacarb P	89	Heptenophos	Pestizid oder TP
Imazalii Pestizid oder TP	90		Pestizid oder TP
Imazalii Pestizid oder TP	91	Hexythiazox	Pestizid oder TP
Indoxacarb Pestizid oder TP			Pestizid oder TP
provalicarb proval	93	Indoxacarb	
Sofenphos Pestizid oder TP	94	Iprovalicarb	Pestizid oder TP
Soprocarb Pestizid oder TP		'	
Linuron Pestizid oder TP			
Mandipropamid Pestizid oder TP Mecarbam Pestizid oder TP Metamitron Pestizid oder TP Methidathion Pestizid oder TP Methiocarb Pestizid oder TP Methiocarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP Methiocarb-sulfoxid (Mercaptodimethur-sulfon) Pestizid oder TP Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP Metribuzin Pestizid oder TP Metrib			
99MecarbamPestizid oder TP100MepanipyrimPestizid oder TP101MetamitronPestizid oder TP102MethidathionPestizid oder TP103MethiocarbPestizid oder TP104Methiocarb-sulfon (Mercaptodimethur-sulfon)Pestizid oder TP105Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid)Pestizid oder TP106MethoxyfenozidPestizid oder TP107MetribuzinPestizid oder TP108NuarimolPestizid oder TP109OxadixylPestizid oder TP110PaclobutrazolPestizid oder TP111Paraoxon-ethylPestizid oder TP112PencycuronPestizid oder TP113PendimethalinPestizid oder TP114PenoxsulamPestizid oder TP115PhenthoatePestizid oder TP116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
Mepanipyrim Pestizid oder TP Metamitron Pestizid oder TP Methidathion Pestizid oder TP Methiocarb Pestizid oder TP Methiocarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP Metribuzin Pestizid oder TP Metribuzin Pestizid oder TP Merribuzin Pestizid oder TP Merribuzin Pestizid oder TP Merribuzin Pestizid oder TP Proshorac Pestizid oder TP		• •	
Metamitron Pestizid oder TP 102 Methidathion Pestizid oder TP 103 Methiocarb Pestizid oder TP 104 Methiocarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 105 Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP 106 Methoxyfenozid Pestizid oder TP 107 Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 110 Paclobutrazol Pestizid oder TP 111 Paraoxon-ethyl Pestizid oder TP 112 Pencycuron Pestizid oder TP 113 Pendimethalin Pestizid oder TP 114 Penoxsulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 110 Pestizid oder TP 111 Pestizid oder TP 112 Pestizid oder TP 113 Pestizid oder TP 114 Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 120 Prochloraz Pestizid oder TP			
Methidathion Pestizid oder TP 103 Methiocarb Pestizid oder TP 104 Methiocarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 105 Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP 106 Methoxyfenozid Pestizid oder TP 107 Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 110 Paclobutrazol Pestizid oder TP 111 Paraoxon-ethyl Pestizid oder TP 112 Pencycuron Pestizid oder TP 113 Pendimethalin Pestizid oder TP 114 Penoxsulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 110 Pestizid oder TP 111 Pestizid oder TP 112 Pestizid oder TP 113 Pestizid oder TP 114 Penoxsulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 110 Pirimiphos-methyl Pestizid oder TP 1110 Pestizid oder TP 1120 Prochloraz Pestizid oder TP			
Methiocarb Pestizid oder TP 104 Methiocarb-sulfon (Mercaptodimethur-sulfon) Pestizid oder TP 105 Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Pestizid oder TP 106 Methoxyfenozid Pestizid oder TP 107 Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 110 Paclobutrazol Pestizid oder TP 111 Paraoxon-ethyl Pestizid oder TP 112 Pencycuron Pestizid oder TP 113 Pendimethalin Pestizid oder TP 114 Penoxsulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 110 Pestizid oder TP 111 Pestizid oder TP 112 Pestizid oder TP 113 Pestizid oder TP 114 Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 120 Prochloraz Pestizid oder TP			
104Methiocarb-sulfon (Mercaptodimethur-sulfon)Pestizid oder TP105Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid)Pestizid oder TP106MethoxyfenozidPestizid oder TP107MetribuzinPestizid oder TP108NuarimolPestizid oder TP109OxadixylPestizid oder TP110PaclobutrazolPestizid oder TP111Paraoxon-ethylPestizid oder TP112PencycuronPestizid oder TP113PendimethalinPestizid oder TP114PenoxsulamPestizid oder TP115PhenthoatePestizid oder TP116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
Methiocarb-sulfoxid (Mercaptodimethur-sulfoxid) Methoxyfenozid Metribuzin Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 110 Paclobutrazol Pestizid oder TP 111 Paraoxon-ethyl Pencycuron Pendimethalin Pendimethalin Penoxsulam Penoxsulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP			
Metribuzin Metribuzin Pestizid oder TP 108 Nuarimol Pestizid oder TP 109 Oxadixyl Pestizid oder TP 110 Paclobutrazol Pestizid oder TP 111 Paraoxon-ethyl Pencycuron Pestizid oder TP 112 Pencycuron Pestizid oder TP 113 Pendimethalin Pestizid oder TP 114 Penoxsulam Pestizid oder TP 115 Phenthoate Pestizid oder TP 116 Phosalon Pestizid oder TP 117 Phosphamidon Pestizid oder TP 118 Pirimicarb-desmethyl Pestizid oder TP 119 Pirimiphos-methyl Pestizid oder TP 120 Prochloraz Pestizid oder TP Pestizid oder TP Pestizid oder TP Pestizid oder TP		·	
107MetribuzinPestizid oder TP108NuarimolPestizid oder TP109OxadixylPestizid oder TP110PaclobutrazolPestizid oder TP111Paraoxon-ethylPestizid oder TP112PencycuronPestizid oder TP113PendimethalinPestizid oder TP114PenoxsulamPestizid oder TP115PhenthoatePestizid oder TP116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
Nuarimol Pestizid oder TP Oxadixyl Pestizid oder TP Paclobutrazol Pestizid oder TP Perstizid oder TP Pestizid oder TP Perstizid oder TP Pestizid oder TP			
109OxadixylPestizid oder TP110PaclobutrazolPestizid oder TP111Paraoxon-ethylPestizid oder TP112PencycuronPestizid oder TP113PendimethalinPestizid oder TP114PenoxsulamPestizid oder TP115PhenthoatePestizid oder TP116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
Pestizid oder TP Percycuron Pestizid oder TP Pencycuron Pestizid oder TP Pencycuron Pestizid oder TP Pencycuron Pestizid oder TP Pencycuron Pestizid oder TP Pestizid oder TP Pencycuron Pestizid oder TP			
111Paraoxon-ethylPestizid oder TP112PencycuronPestizid oder TP113PendimethalinPestizid oder TP114PenoxsulamPestizid oder TP115PhenthoatePestizid oder TP116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
Pestizid oder TP Pendimethalin Pendimethalin Penoxsulam Penoxsulam Pestizid oder TP Penoxsulam Pestizid oder TP			
Pestizid oder TP Penoxsulam Penoxsulam Pestizid oder TP		,	
114PenoxsulamPestizid oder TP115PhenthoatePestizid oder TP116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
115PhenthoatePestizid oder TP116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
116PhosalonPestizid oder TP117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP			
117PhosphamidonPestizid oder TP118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP	115		
118Pirimicarb-desmethylPestizid oder TP119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP	116		
119Pirimiphos-methylPestizid oder TP120ProchlorazPestizid oder TP	117		Pestizid oder TP
120 Prochloraz Pestizid oder TP	118	Pirimicarb-desmethyl	Pestizid oder TP
	119	Pirimiphos-methyl	Pestizid oder TP
121 Propoxur Pestizid oder TP	120	Prochloraz	Pestizid oder TP
	121	Propoxur	Pestizid oder TP

Porthisconazole-desthio Pestizid oder TP	400	lp	la 1 Ta
Pyradostrobin Pyradostrobin Pyrtizid oder TP	122	Proquinazid	Pestizid oder TP
Pyridaben Pyridaben Pyrimethanil Pestizid oder TP			
Pestizid oder TP		,	
Spinosyn A (Spinosad)		,	
Spinosyn A (Spinosad) Spinosyn D (Spinosad)		,	
Spinosyn D (Spinosad)			
Spiroticlofen Pestizid oder TP			
Spiroxamin Pestizid oder TP 32 Spiroxamin Pestizid oder TP 33 Tebufenozid Pestizid oder TP 34 Tebufenozid Pestizid oder TP 35 Tetraconazole Pestizid oder TP 36 Thiacloprid Pestizid oder TP 37 Thiodicarb Pestizid oder TP 38 Triacophos Pestizid oder TP 39 Trifloxystrobin Pestizid oder TP 39 Trifloxystrobin Pestizid oder TP 40 Triforin Pestizid oder TP 41 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) Arzneimittel/Droge oder TP 42 3,4-Methylendioxy-Ne-thylamphetamin (MDE) Arzneimittel/Droge oder TP 43 3,4-Methylendioxy-Ne-thylamphetamin (MDE) Arzneimittel/Droge oder TP 44 3,4-Methylendioxy-Ne-thylamphetamin (MDMA) Arzneimittel/Droge oder TP 45 7-Aminoflunitrazepam Arzneimittel/Droge oder TP 46 7-Aminoflunitrazepam Arzneimittel/Droge oder TP 47 Arzneimittel/Droge oder TP 48 Alprazolam Arzneimittel/Droge oder TP 48 Alprazolam Arzneimittel/Droge oder TP 49 Amphetamin Arzneimittel/Droge oder TP 40 Amphetamin Arzneimittel/Droge oder TP 41 Amphetamin Arzneimittel/Droge oder TP 42 Amphetamin Arzneimittel/Droge oder TP 43 Amphetamin Arzneimittel/Droge oder TP 44 Apprazolam Arzneimittel/Droge oder TP 45 Bromazepam-OH Arzneimittel/Droge oder TP 46 Arzneimittel/Droge oder TP 47 Arzneimittel/Droge oder TP 48 Buprenorphin Arzneimittel/Droge oder TP 48 Buprenorphin Arzneimittel/Droge oder TP 48 Buprenorphin Arzneimittel/Droge oder TP 49 Arzneimittel/Droge oder TP 40 Benozepam Arzneimittel/Droge oder TP 41 Arzneimittel/Droge oder TP 41 Arzneimittel/Droge oder TP 42 Arzneimittel/Droge oder TP 43 Buprenorphin Arzneimittel/Droge oder TP 44 Arzneimittel/Droge oder TP 45 Buprenorphin Arzneimittel/Droge oder TP 45 Buprenorphin Arzneimittel/Droge oder TP 46 Clobazam Arzneimittel/Droge oder TP 47 Arzneimittel/Droge oder TP 48 Codein Arzneimittel/Droge oder TP 48 Codein Arzneimittel/Droge oder TP 48 Codein Arzneimittel/Droge oder TP 49 Arzneimittel/Droge oder TP 40 Doxylamin Arzneimittel/Droge oder TP 41 Hydroxelordinizel Alz, d2 41 Arzneimittel/Droge oder TP 42 Lorazepam Arznei			
Spirovamin Pestizid oder TP			
Tebufenozid Tebufenozid Pestizid oder TP Pestizid oder TP Tebufenyard Pestizid oder TP Tebufenyard Pestizid oder TP Tebufenyard Pestizid oder TP Testizid oder TP Thiologrid Pestizid oder TP Thiologrid Pestizid oder TP Testizid			
Tebufenpyrad Pestizid oder TP Tetraconazole Pestizid oder TP Tetraconazole Pestizid oder TP Tetraconazole Pestizid oder TP Thiodicarb Pestizid oder TP Triforin Pestizid oder TP Thiodicarb Azneimite/Droge oder TP Thiodicarb Azne		<u> </u>	
Tetraconazole Pestizid oder TP Thiacloprid Pestizid oder TP Thiodicarb Pestizid oder TP Thiodicarb Pestizid oder TP Trifloxystrobin Pestizid			
Thiacloprid Thiodicarb Pestizid oder TP Arzneimitte/Droge oder TP Arzneimitte/Droge oder TP Arzneimitte/Droge oder TP Pestizid oder TP Arzneimitte/Droge oder TP Pestizid oder T			
Triotocarb Triazophos Pestizid oder TP Triazophos Triforin Pestizid oder TP Triforin Arzneimitte/Droge oder TP Triforin Triforin Triforin Arzneimitte/Droge oder TP Triforin Trifo			
Triazophos 139 Trifloxystrobin 139 Trifloxystrobin 139 Trifloxystrobin 139 Trifloxystrobin 140 Triforin 141 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) 142 3,4-Methylendioxy-N-ethylamphetamin (MDE) 143 3,4-Methylendioxy-N-ethylamphetamin (MDE) 144 3,4-Methylendioxy-N-methylamphetamin (MDMA) 145 T-Aminoclonazepam 146 T-Aminoflunitzaepam 147 Azneimittel/Droge oder TP 148 Ajeracimitel/Droge oder TP 149 T-Aminominitzaepam 140 T-Aminoflunitzaepam 141 Azneimittel/Droge oder TP 142 Azneimittel/Droge oder TP 143 Azneimittel/Droge oder TP 144 Azneimittel/Droge oder TP 145 T-Aminominitzaepam 146 T-Aminoflunitzaepam 147 T-Aminominitzaepam 148 Ajerazolam 149 Amphetamin 150 Benzoyleegonin (BEC) 150 Benzoyleegonin (BEC) 151 Bromazepam 152 Bromazepam 153 Brotizolam 154 Azneimittel/Droge oder TP 155 Bromazepam-OH 156 Azneimittel/Droge oder TP 157 Buprenorphin 158 Buprenorphin-Nor 159 Azneimittel/Droge oder TP 150 Buprenorphin-Nor 150 Azneimittel/Droge oder TP 151 Buprenorphin 151 Bromazepam 152 Cocain 153 Cocain 154 Azneimittel/Droge oder TP 155 Buprenorphin-Nor 156 Clobazam 157 Clonazepam 158 Cocain 159 Codein 159 Codein 150 Dextromethorphan 151 Diazepam 152 Codein 153 Cocain 154 Azneimittel/Droge oder TP 155 Cocain 156 Clobazam 157 Clonazepam 158 Cocain 159 Codein 159 Codein 150 Dextromethorphan 151 Diazepam 152 Codein 153 Cocain 154 Azneimittel/Droge oder TP 156 Clobazam 157 Clonazepam 158 Cocain 159 Codein 150 Dextromethorphan 151 Diazepam 152 Cocain 155 Cocain 156 Cocain 157 Clonazepam 158 Cocain 159 Cocain 150 Dextromethorphan 151 Cocain 151 Cocain 152 Cocain 153 Cocain 154 Cocain 155 Cocain 155 Cocain 156 Cocain 157 Clonazepam 157 Clonazepam 158 Cocain 159 Cocain 150 Dextromethorphan 151 Clonazepam 151 Clonazepam 152 Cocain 153 Clonazepam 154 Cocain 155 Cocain 155 Cocain 157 Clonazepam 158 Cocain 159 Cocain 150 Dextromethorphan 151 Clonazepam 151 Clonazepam 152 Cocain 153 Clonazepam 154 Clonazepam 155 Clonazepam 156 Clonazepam 157 Clonazepam 157 Clonazepam 158 Cocain 159 Cocain 150 Dextromethorphan 150 Dext		•	
Trifloxystrobin Pestizid oder TP Triforin Pestizid oder TP Triforin Pestizid oder TP 140 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) Azneimittel/Droge oder TP 141 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) Azneimittel/Droge oder TP 142 3,4-Methylendioxy-Arethylamphetamin (MDE) Azneimittel/Droge oder TP 143 3,4-Methylendioxy-N-methylamphetamin (MDMA) Azneimittel/Droge oder TP 145 7-Aminoclonazepam Azneimittel/Droge oder TP 146 7-Aminonitrazepam Azneimittel/Droge oder TP 147 7-Aminonitrazepam Azneimittel/Droge oder TP 148 Alprazolam Azneimittel/Droge oder TP 149 Amphetamin Azneimittel/Droge oder TP 150 Benzoylecgonin (BEC) Azneimittel/Droge oder TP 151 Bromazepam Azneimittel/Droge oder TP 152 Bromazepam Azneimittel/Droge oder TP 153 Brotizolam Azneimittel/Droge oder TP 154 Buprenorphin Azneimittel/Droge oder TP 155 Buprenorphin Azneimittel/Droge oder TP 156 Clobazam Azneimittel/Droge oder TP 157 Clonazepam Azneimittel/Droge oder TP 158 Cocain Azneimittel/Droge oder TP 159 Codein Azneimittel/Droge oder TP 150 Codein Azneimittel/Droge oder TP 151 Clonazepam Azneimittel/Droge oder TP 152 Cocain Azneimittel/Droge oder TP 153 Cocain Azneimittel/Droge oder TP 156 Clobazam Azneimittel/Droge oder TP 157 Clonazepam Azneimittel/Droge oder TP 158 Cocain Azneimittel/Droge oder TP 159 Codein Azneimittel/Droge oder TP 160 Dextromethorphan Azneimittel/Droge oder TP 161 Diazepam Azneimittel/Droge oder TP 162 Dihydrocodein Azneimittel/Droge oder TP 163 Diphenhydramin Azneimittel/Droge oder TP 164 Doxylamin Azneimittel/Droge oder TP 165 Ethylcocain Azneimittel/Droge oder TP 166 Fentanyl Azneimittel/Droge oder TP 167 Flunitrazepam Azneimittel/Droge oder TP 168 Flunitrazepam Azneimittel/Droge oder TP 179 Hydrochlorothiazid 13C, d2 Azneimittel/Droge oder TP 170 Hydromorphon Azneimittel/Droge oder TP 171 Ketamin Azneimittel/Droge oder TP 172 Lorazepam Azneimittel/Droge oder TP 173 Lormetazepam Azneimittel/Droge oder TP 174 Medazepam Azneimittel/Droge oder TP 175 Methamphetamin Azneimittel/Droge oder TP 176 M			Pestizid oder TP
Triforin Pestizid oder TP 141 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) Arzneimittel/Droge oder TP 142 3.4-Methylendioxy-M-ethylamphetamin (MDE) Arzneimittel/Droge oder TP 143 3.4-Methylendioxy-N-methylamphetamin (MDE) Arzneimittel/Droge oder TP 145 7-Aminoclonazepam Arzneimittel/Droge oder TP 146 7-Aminoclonitrazepam Arzneimittel/Droge oder TP 147 7-Aminolinitrazepam Arzneimittel/Droge oder TP 148 Alprazolam Arzneimittel/Droge oder TP 149 Amphetamin Arzneimittel/Droge oder TP 150 Benzoylecgonin (BEC) Arzneimittel/Droge oder TP 151 Bromazepam Arzneimittel/Droge oder TP 152 Bromazepam Arzneimittel/Droge oder TP 153 Brotizolam Arzneimittel/Droge oder TP 154 Buprenorphin-Nor Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Clonazepam Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Dihydrocodein Arzneimittel/Droge oder TP 168 Dihydrocodein Arzneimittel/Droge oder TP 169 Dextromethorphan Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepamesementyl Arzneimittel/Droge oder TP 168 Flunitrazepamesementyl Arzneimittel/Droge oder TP 179 Hydrochorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP		· ·	
2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) Arzneimittel/Droge oder TP			
3,4-Methylendioxyamphetamin Arzneimittel/Droge oder TP 143 3,4-Methylendioxy-N-ethylamphetamin (MDE) Arzneimittel/Droge oder TP 145 7-Aminodonazepam Arzneimittel/Droge oder TP 146 7-Aminodinitrazepam Arzneimittel/Droge oder TP 147 7-Aminonitrazepam Arzneimittel/Droge oder TP 148 Alprazolam Arzneimittel/Droge oder TP 148 Alprazolam Arzneimittel/Droge oder TP 149 Amphetamin Arzneimittel/Droge oder TP 149 Amphetamin Arzneimittel/Droge oder TP 150 Benzoylecgonin (BEC) Arzneimittel/Droge oder TP 151 Bromazepam Arzneimittel/Droge oder TP 152 Bromazepam Arzneimittel/Droge oder TP 153 Brotizolam Arzneimittel/Droge oder TP 154 Buprenorphin Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocian Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepamesemethyl Arzneimittel/Droge oder TP 168 Flunitrazepame Arzneimittel/Droge oder TP 179 Hydromorphon Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 Methadon Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methadon Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 180 M			
3,4-Methylendioxy-N-ethylamphetamin (MDE)			Arzneimittel/Droge oder TP
144 3,4-Methylendioxy-N-methylamphetamin (MDMA) Arzneimittel/Droge oder TP 145 7-Aminoclonazepam Arzneimittel/Droge oder TP 146 7-Aminoflunitrazepam Arzneimittel/Droge oder TP 147 7-Aminonitrazepam Arzneimittel/Droge oder TP 148 Alprazolam Arzneimittel/Droge oder TP 149 Amphetamin Arzneimittel/Droge oder TP 150 Benzoylecgonin (BEC) Arzneimittel/Droge oder TP 151 Bromazepam Arzneimittel/Droge oder TP 152 Bromazepam-OH Arzneimittel/Droge oder TP 153 Brotizolam Arzneimittel/Droge oder TP 154 Buprenorphin Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Dihydrocodein Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Doxylamin Arzneimittel/Droge oder TP 168 Ethylcocain Arzneimittel/Droge oder TP 169 Diydrochiorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydrochiorothiazid 13C, d2 Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lorazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 Methadon Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methadon Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 170 MonoAcetylMorphin Arzneimittel/Droge oder TP 171 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 170 MonoAcetylMorphin Arzneimittel/Droge oder TP 171 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP	142		
Arzneimittel/Droge oder TP	143		Arzneimittel/Droge oder TP
Arzneimittel/Droge oder TP	144	, , , , , , , , , , , , , , , , , , , ,	
Arzneimittel/Droge oder TP	145	7-Aminoclonazepam	Arzneimittel/Droge oder TP
Alprazolam Aprintel/Droge oder TP Amphetamin Arzneimittel/Droge oder TP Berzoylecgonin (BEC) Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Bromazepam Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Bromazepam Arzneimittel/Droge oder TP Bromazepam-OH Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Brotizolam Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Clonazepam Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Cocain Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Cocain Arzneimittel/Droge oder TP Cocain Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Dissepam Arzneimittel/Droge oder TP Diszepam Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Diszepam Arzneimittel/Droge oder TP Arzneimitte	146	7-Aminoflunitrazepam	Arzneimittel/Droge oder TP
Amphetamin Arzneimittel/Droge oder TP 150 Benzoylecgonin (BEC) Arzneimittel/Droge oder TP 151 Bromazepam Arzneimittel/Droge oder TP 152 Bromazepam-OH Arzneimittel/Droge oder TP 153 Brotizolam Arzneimittel/Droge oder TP 154 Buprenorphin Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepam Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 Methandon Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methandon Arzneimittel/Droge oder TP 178 Methadon Arzneimittel/Droge oder TP 179 Methadon Arzneimittel/Droge oder TP 170 Methadon Arzneimittel/Droge oder TP 171 Methandon Arzneimittel/Droge oder TP 172 Methadon Arzneimittel/Droge oder TP 173 Methadon Arzneimittel/Droge oder TP 174 Methadon Arzneimittel/Droge oder TP 175 Methadon Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP	147	7-Aminonitrazepam	Arzneimittel/Droge oder TP
Benzoylecgonin (BEC)	148	Alprazolam	Arzneimittel/Droge oder TP
Bromazepam Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Bromazepam-OH Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Buprenorphin Arzneimittel/Droge oder TP Clonazepam Arzneimittel/Droge oder TP	149	Amphetamin	Arzneimittel/Droge oder TP
Bromazepam-OH Arzneimittel/Droge oder TP 153 Brotizolam Arzneimittel/Droge oder TP 154 Buprenorphin Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepam Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 Methandon Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP	150	Benzoylecgonin (BEC)	Arzneimittel/Droge oder TP
Brotizolam Arzneimittel/Droge oder TP 154 Buprenorphin Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepam Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 Methadon Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 Morphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam	151	Bromazepam	Arzneimittel/Droge oder TP
Brotizolam Arzneimittel/Droge oder TP 154 Buprenorphin Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepam Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 Morphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam	152	Bromazepam-OH	Arzneimittel/Droge oder TP
Buprenorphin Arzneimittel/Droge oder TP 155 Buprenorphin-Nor Arzneimittel/Droge oder TP 156 Clobazam Arzneimittel/Droge oder TP 157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepamdesmethyl Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP	153	Brotizolam	
Buprenorphin-Nor	154	Buprenorphin	
Arzneimittel/Droge oder TP	155	Buprenorphin-Nor	
157 Clonazepam Arzneimittel/Droge oder TP 158 Cocain Arzneimittel/Droge oder TP 159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepamdesmethyl Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP	156	Clobazam	
Arzneimittel/Droge oder TP	157	Clonazepam	
159 Codein Arzneimittel/Droge oder TP 160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepamdesmethyl Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP	158	•	
160 Dextromethorphan Arzneimittel/Droge oder TP 161 Diazepam Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepamdesmethyl Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP	159	Codein	
Arzneimittel/Droge oder TP 162 Dihydrocodein Arzneimittel/Droge oder TP 163 Diphenhydramin Arzneimittel/Droge oder TP 164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepamdesmethyl Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 170 Morphin Arzneimittel/Droge oder TP 171 Morphin Arzneimittel/Droge oder TP 172 Morphin Arzneimittel/Droge oder TP 173 Morphin Arzneimittel/Droge oder TP 174 Morphin Arzneimittel/Droge oder TP 175 Morphin Arzneimittel/Droge oder TP 176 Morphin Arzneimittel/Droge oder TP 177 Morphin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 179 Morphin Arzneimittel/Droge oder TP			
162DihydrocodeinArzneimittel/Droge oder TP163DiphenhydraminArzneimittel/Droge oder TP164DoxylaminArzneimittel/Droge oder TP165EthylcocainArzneimittel/Droge oder TP166FentanylArzneimittel/Droge oder TP167FlunitrazepamArzneimittel/Droge oder TP168FlunitrazepamdesmethylArzneimittel/Droge oder TP169Hydrochlorothiazid 13C, d2Arzneimittel/Droge oder TP170HydromorphonArzneimittel/Droge oder TP171KetaminArzneimittel/Droge oder TP172LorazepamArzneimittel/Droge oder TP173LormetazepamArzneimittel/Droge oder TP174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP		·	
163DiphenhydraminArzneimittel/Droge oder TP164DoxylaminArzneimittel/Droge oder TP165EthylcocainArzneimittel/Droge oder TP166FentanylArzneimittel/Droge oder TP167FlunitrazepamArzneimittel/Droge oder TP168FlunitrazepamdesmethylArzneimittel/Droge oder TP169Hydrochlorothiazid 13C, d2Arzneimittel/Droge oder TP170HydromorphonArzneimittel/Droge oder TP171KetaminArzneimittel/Droge oder TP172LorazepamArzneimittel/Droge oder TP173LormetazepamArzneimittel/Droge oder TP174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			, ,
164 Doxylamin Arzneimittel/Droge oder TP 165 Ethylcocain Arzneimittel/Droge oder TP 166 Fentanyl Arzneimittel/Droge oder TP 167 Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepamdesmethyl Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP			
165EthylcocainArzneimittel/Droge oder TP166FentanylArzneimittel/Droge oder TP167FlunitrazepamArzneimittel/Droge oder TP168FlunitrazepamdesmethylArzneimittel/Droge oder TP169Hydrochlorothiazid 13C, d2Arzneimittel/Droge oder TP170HydromorphonArzneimittel/Droge oder TP171KetaminArzneimittel/Droge oder TP172LorazepamArzneimittel/Droge oder TP173LormetazepamArzneimittel/Droge oder TP174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			
Arzneimittel/Droge oder TP		,	
Flunitrazepam Arzneimittel/Droge oder TP 168 Flunitrazepamdesmethyl Arzneimittel/Droge oder TP 169 Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP 170 Hydromorphon Arzneimittel/Droge oder TP 171 Ketamin Arzneimittel/Droge oder TP 172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP			
Flunitrazepamdesmethyl Arzneimittel/Droge oder TP Hydrochlorothiazid 13C, d2 Arzneimittel/Droge oder TP Hydromorphon Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Arzneimittel/Droge oder TP Lorazepam Arzneimittel/Droge oder TP		·	
169Hydrochlorothiazid 13C, d2Arzneimittel/Droge oder TP170HydromorphonArzneimittel/Droge oder TP171KetaminArzneimittel/Droge oder TP172LorazepamArzneimittel/Droge oder TP173LormetazepamArzneimittel/Droge oder TP174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			· -
170HydromorphonArzneimittel/Droge oder TP171KetaminArzneimittel/Droge oder TP172LorazepamArzneimittel/Droge oder TP173LormetazepamArzneimittel/Droge oder TP174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			
171KetaminArzneimittel/Droge oder TP172LorazepamArzneimittel/Droge oder TP173LormetazepamArzneimittel/Droge oder TP174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			· -
172 Lorazepam Arzneimittel/Droge oder TP 173 Lormetazepam Arzneimittel/Droge oder TP 174 Medazepam Arzneimittel/Droge oder TP 175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP			
173LormetazepamArzneimittel/Droge oder TP174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			
174MedazepamArzneimittel/Droge oder TP175meta-ChlorphenylpiperazinArzneimittel/Droge oder TP176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP		·	
175 meta-Chlorphenylpiperazin Arzneimittel/Droge oder TP 176 Methadon Arzneimittel/Droge oder TP 177 Methamphetamin Arzneimittel/Droge oder TP 178 Midazolam Arzneimittel/Droge oder TP 179 MonoAcetylMorphin Arzneimittel/Droge oder TP 180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP			
176MethadonArzneimittel/Droge oder TP177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP		,	
177MethamphetaminArzneimittel/Droge oder TP178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			
178MidazolamArzneimittel/Droge oder TP179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			
179MonoAcetylMorphinArzneimittel/Droge oder TP180MorphinArzneimittel/Droge oder TP181N-DesalkylflurazepamArzneimittel/Droge oder TP			
180 Morphin Arzneimittel/Droge oder TP 181 N-Desalkylflurazepam Arzneimittel/Droge oder TP			
181 N-Desalkylflurazepam Arzneimittel/Droge oder TP		, ,	
		•	
ITX/ IN-LIGEMETHYITE MACI			
Total like programment has been programmed by programment by progr	182	N-Desmethyltramadol	Arzneimittel/Droge oder TP

183	Nitrazepam	Arzneimittel/Droge oder TP
184	Nordazepam	Arzneimittel/Droge oder TP
185	Norfentanyl	Arzneimittel/Droge oder TP
186	O-Desmethyltramadol (O-DSMT)	Arzneimittel/Droge oder TP
187	Oxazepam	Arzneimittel/Droge oder TP
188	Oxycodon	Arzneimittel/Droge oder TP
189	Pethidin (Meperidin)	Arzneimittel/Droge oder TP
190	Piritramid	Arzneimittel/Droge oder TP
191	Sulfadimethoxine d6	Arzneimittel/Droge oder TP
192	Temazepam	Arzneimittel/Droge oder TP
193	Tetrahydrocannabinol-COOH	Arzneimittel/Droge oder TP
194	Tetrazepam	Arzneimittel/Droge oder TP
195	Tilidin	Arzneimittel/Droge oder TP
196	Tilidin-Desmethyl	Arzneimittel/Droge oder TP
197	Tramadol	Arzneimittel/Droge oder TP
198	Triazolam	Arzneimittel/Droge oder TP
199	Zaleplon	Arzneimittel/Droge oder TP
200	Zolpidem	Arzneimittel/Droge oder TP
201	Zopiclon	Arzneimittel/Droge oder TP
202	α-hydroxy Alprazolam	Arzneimittel/Droge oder TP
203	Triphenylphosphat	Weichmacher

Anhang 7: Renaturierung Hohenholte (realisierte Umgestaltung)

Anhang 8: Vor-Ort Parameter der Stichtagsprobenahmen im EZG

Probenahmestelle	Probenahme- kampagne	Lufttemperatur [°C]	Wassertemperatur [°C]	pH-Wert	Leitfähigkeit [μS/cm²]	Sauerstoffsättigung [%]	Sauerstoffgehalt [mg/L]	Oxidatives Redoxpotential [mV]
01	Mai 2018	*	9,5	7,8	788,0	79,0	7,1	277,0
	Mai 2019	10,8	8,8	8,2	745,0	96,1	10,7	*
	Jul 2019	15,0	12,3	8,1	695,0	92,4	9,4	*
	Dez 2019	7,0	8,3	7,9	738,0	89,5	10,3	254,0
	Jun 2020	2< LOD	12,0	8,9	704,0	94,9	10,1	249,0
02	Mai 2018	*	15,0	7,8	72< LOD	87,0	8,7	221,0
	Mai 2019	10,6	8,3	8,2	774,0	99,6	11,8	*
	Jul 2019	8,0	6,5	7,6	604,0	10,3	8,5	252,0
	Dez 2019	*	*	*	*	*	*	*
	Jun 2020	21,0	*	*	*	*	*	*
03	Mai 2018	*	14,0	8,1	725,0	79,5	8,7	17< LOD
	Mai 2019	10,3	9,9	8,2	72< LOD	100,4	11,5	*
	Jul 2019	17,0	14,7	7,9	644,0	81,6	8,2	*
	Dez 2019	6,0	7,3	7,9	779,0	93,0	11,0	261,0
	Jun 2020	2< LOD	15,9	8,1	675,0	86,3	8,5	25< LOD
04	Mai 2018	*	17,0	8,0	764,0	10< LOD	9,8	329,0
	Mai 2019	10,8	11,3	8,5	601,0	131,1	14,5	*
	Jul 2019	17,0	14,5	7,7	483,0	70,1	7,1	*
	Dez 2019	7,0	6,0	7,8	73< LOD	92,4	11,3	228,0
	Jun 2020	21,0	18,5	8,0	527,0	78,0	7,3	233,0
05	Mai 2018	*	20,3	7,6	652,0	22,7	2,3	20< LOD
	Mai 2019	10,2	10,7	8,2	637,0	125,5	14,1	*
	Jul 2019	2< LOD	17,3	7,7	441,0	75,9	7,2	*
	Dez 2019	8,0	5,9	7,8	762,0	84,6	10,3	253,0
	Jun 2020	21,0	18,2	7,9	551,0	72,3	6,7	234,0
06	Mai 2018	*	17,0	8,1	745,0	88,0	8,7	292,0
	Mai 2019	12,3	11,4	8,6	605,0	150,5	16,6	*
	Jul 2019	21,0	17,2	7,5	245,0	61,2	5,9	*
	Dez 2019	8,0	6,0	7,8	755,0	87,5	10,7	258,0
	Jun 2020	21,0	18,2	8,0	534,0	76,2	7,1	142,0
06a	Mai 2018	*	16,0	8,1	727,0	89,0	9,0	296,0
	Mai 2019	11,4	11,9	8,2	763,0	118,3	12,9	*
	Jul 2019	22,0	18,1	7,8	396,0	86,7	8,2	*

Probenahmestelle	Probenahme- kampagne	Lufttemperatur [°C]	Wassertemperatur [°C]	pH-Wert	Leitfähigkeit [µS/cm²]	Sauerstoffsättigung [%]	Sauerstoffgehalt [mg/L]	Oxidatives Redoxpotential [mV]
	Dez 2019	8,0	6,5	7,9	714,0	87,6	10,6	24< LOD
0.61	Jun 2020	21,0	18,1	7,8	295,0	67,5	6,2	231,0
06b	Mai 2018	*	14,0	8,5	745,0	97,0	9,6	277,0
	Mai 2019	1< LOD	10,3	8,2	659,0	89,5	10,8	*
	Jul 2019	17,0	15,5	7,9	474,0	76,1	7,6	
	Dez 2019	7,0	5,4	7,9	688,0	86,9	10,8	233,0
	Jun 2020	18,0	16,7	7,9	472,0	80,7	7,8	304,0
06c	Mai 2018	*	14,0	8,1	726,0	99,2	10,7	31< LOD
	Mai 2019	9,9	8,7	8,2	747,0	93,7	11,0	*
	Jul 2019	16,0	14,3	8,1	703,0	82,1	8,4	*
	Dez 2019	7,0	7,3	7,8	774,0	90,2	10,7	14< LOD
	Jun 2020	17,0	14,3	8,0	687,0	90,2	9,2	327,0
06d	Mai 2018	*	14,0	7,3	857,0	77,0	7,3	255,0
	Mai 2019	9,5	9,6	7,3	755,0	73,8	8,5	*
	Jul 2019	16,0	11,3	7,8	713,0	87,7	8,9	*
	Dez 2019	*	*	*	*	*	*	*
	Jun 2020	2< LOD	10,9	7,5	701,0	81,0	8,9	27< LOD
06e	Mai 2018	*	9,9	6,9	75< LOD	6< LOD	6,0	23< LOD
	Mai 2019	9,2	9,7	7,1	757,0	61,5	6,0	*
	Jul 2019	15,0	9,8	7,1	725,0	51,6	5,8	*
	Dez 2019	7,0	9,7	7,0	736,0	51,5	5,7	273,0
	Jun 2020	18,0	9,9	7,1	716,0	53,0	5,4	332,0
07	Mai 2018	*	17,0	8,1	889,0	127,0	12,3	292,0
	Mai 2019	14,2	13,0	8,5	714,0	150,5	16,0	*
	Jul 2019	16,0	16,2	7,9	484,0	90,6	8,9	*
	Dez 2019	6,0	5,6	7,6	724,0	87,6	10,8	223,0
	Jun 2020	19,0	17,4	7,5	*	63,4	6,0	117,0
08	Mai 2018	*	16,6	7,9	73< LOD	61,3	6,0	165,0
	Mai 2019	12,2	12,8	8,5	683,0	150,5	16,1	*
	Jul 2019	2< LOD	17,9	7,8	298,0	75,0	7,1	*
	Dez 2019	8,0	6,2	7,8	732,0	89,1	10,9	277,0
	Jun 2020	2< LOD	18,1	7,8	358,0	67,4	6,3	171,0
08a	Mai 2018	*	17,0	8,5	746,0	116,0	11,5	311,0
	Mai 2019	13,1	15,9	8,1	777,0	164,2	16,4	*
	Jul 2019	21,0	16,8	7,7	52< LOD	83,8	8,1	*
	Dez 2019	8,0	6,7	7,9	731,0	97,4	11,4	258,0

Probenahmestelle	Probenahme- okampagne	ک CLufttemperatur [°C]	ជ្ជ មួយ [°C]	pH-Wert	င္တ C Leitfähigkeit [μS/cm²]	Sauerstoffsättigung [%]	் Sauerstoffgehalt [mg/L]	HOxidatives Redoxpotential [mV]
09	Mai 2018	*	*	*	*	*	*	*
		12,5	13,9	8,1	732,0	111,9	11,7	*
	Jul 2019		18,0	7,7		85,0	8,0	*
	Dez 2019		6,2	7,9	•	92,6	11,3	274,0
	Jun 2020	22,0	18,9	7,9	339,0	80,4	7,8	172,0
10	Mai 2018		17,0	7,6	•	92,0	9,1	33< LOD
		8,9	11,7	7,8	757,0	100,2	11,0	*
			17,8	7,3	406,0	48,2	4,6	*
			6,7	8,0		88,5	10,6	177,0
	Jun 2020	25,0	19,4	7,8	337,0	69,4	6,4	164,0
10a	Mai 2018	 	16,3	7,8	854,0	7< LOD	6,9	182,0
	Mai 2019	7,8	8,6	7,9	1049,0	80,7	9,5	*
	Jul 2019	17,0	16,2	7,6	358,0	54,8	6,3	*
	Dez 2019	14,0	7,7	7,9	823,0	89,3	10,5	168,0
	Jun 2020	24,0	17,7	7,7	46< LOD	76,1	7,2	209,0
10b	Mai 2018	*	15,7	7,8	113< LOD	62,0	6,1	193,0
	Mai 2019	8,7	8,1	7,9	105< LOD	78,6	9,3	*
	Jul 2019	17,0	16,2	7,6	592,0	69,3	6,8	*
	Dez 2019	12,0	7,6	8,0	816,0	89,9	10,5	161,0
	Jun 2020	25,0	17,6	7,8	414,0	78,4	7,4	183,0
11	Mai 2018	*	18,0	7,8	784,0	94,0	11,7	333,0
	Mai 2019	10,9	12,6	7,7	759,0	88,4	9,5	*
	Jul 2019	18,0	17,7	7,0	486,0	38,5	3,7	*
	Dez 2019	13,0	6,7	7,9	735,0	88,0	10,6	166,0
	Jun 2020	25,0	19,7	7,3	374,0	67,1	6,1	178,0
11a	Mai 2018	*	1< LOD	7,9	111< LOD	86,0	8,3	31< LOD
	Mai 2019	11,1	12,1	8,1	1155,0	96,8	10,5	*
	Jul 2019	16,0	15,2	8,1	872,0	91,1	9,1	*
		9,0	7,5	7,9		91,3	10,8	262,0
	Jun 2020	24,0	17,6	7,9	727,0	86,7	8,1	129,0
Aasee	Mai 2018	*	19,2	7,7	576,0	75,0	6,9	164,0
	Mai 2019	9,5	14,6	7,9	705,0	78,0	8,0	*
			20,1	8,4	617,0	105,2	9,6	*
			6,5	8,0		85,3	10,5	175,0
	Jun 2020	17,0	21,0	8,4	51< LOD	95,0	8,4	17< LOD

Probenahmestelle Probenahme- Kampagne		Lufttemperatur [°C]	Wassertemperatur [°C]	pH-Wert	Leitfähigkeit [µS/cm²]	Sauerstoffsättigung [%]	Sauerstoffgehalt [mg/L]	Oxidatives Redoxpotential [mV]
12	Mai 2018	*	11,0	8,2	682,0	81,0	8,0	307,0
	Mai 2019	12,0	14,3	7,9	716,0	74,9	7,5	*
	Jul 2019	19,0	20,5	8,2	618,0	89,0	8,0	*
	Dez 2019	12,0	5,4	8,1	70< LOD	93,0	11,5	171,0
	Jun 2020	2< LOD	21,0	8,4	537,0	99,1	8,8	19< LOD
13	Mai 2018	*	22,0	7,5	653,0	47,5	4,2	193,0
	Mai 2019	14,0	17,9	8,1	733,0	125,7	12,1	*
	Jul 2019	18,0	19,8	8,1	633,0	83,2	7,6	*
	Dez 2019	13,0	6,1	8,1	73< LOD	100,4	12,2	209,0
	Jun 2020	2< LOD	20,6	8,3	551,0	89,0	8,0	183,0
14	Mai 2018	*	23,3	8,1	629,0	101,0	9,5	153,0
	Mai 2019	13,8	16,5	8,3	72< LOD	148,7	14,7	*
	Jul 2019	2< LOD	19,4	8,0	626,0	86,7	8,0	*
	Dez 2019	12,0	6,6	8,0	736,0	92,3	11,2	211,0
	Jun 2020	20,5	20,4	8,3	553,0	87,2	7,8	155,0
14a	Mai 2018	*	20,4	7,6	946,0	86,0	7,9	20< LOD
	Mai 2019	13,3	14,2	7,8	828,0	110,3	11,5	*
	Jul 2019	22,0	17,6	7,5	378,0	74,2	7,1	*
	Dez 2019	*	*	*	*	*	*	*
	Jun 2020	21,0	16,3	7,6	544,0	70,9	6,9	166,0
14b	Mai 2018	*	15,7	7,4	79< LOD	54,0	5,3	9,0
	Mai 2019	12,3	12,1	7,6	87< LOD	84,7	9,3	*
	Jul 2019	2< LOD	17,9	7,6	25< LOD	75,6	7,1	*
	Dez 2019	14,0	7,1	7,9	767,0	85,2	10,1	203,0
	Jun 2020	19,0	16,6	7,5	524,0	71,1	6,9	145,0
14c	Mai 2018	*	18,0	7,7	95< LOD	99,0	9,9	271,0
	Mai 2019	14,0	13,9	8,3	92< LOD	104,0	10,9	*
	Jul 2019	2< LOD	18,3	7,8	279,0	68,1	6,4	*
	Dez 2019	8,0	6,5	7,5	658,0	88,2	10,7	244,0
	Jun 2020	17,0	16,9	7,5	386,0	77,4	7,5	206,0
14d	Mai 2018	*	19,0	8,0	115< LOD	83,0	8,3	255,0
	Mai 2019	12,5	10,9	8,0	872,0	89,1	9,9	*
	Jul 2019	17,0	14,6	7,8	819,0	65,8	6,7	*
	Dez 2019	8,0	7,5	8,0	771,0	92,2	10,9	256,0
	Jun 2020	17,0	15,4	7,7	733,0	77,0	7,6	187,0
15	Mai 2018	*	17,0	8,3	716,0	98,0	9,8	232,0
	1		1	1			1	1

Probenahmestelle	Probenahmestelle		Wassertemperatur	pH-Wert	ω ©Leitfähigkeit [μS/cm²]	* Sauerstoffsättigung [%]	ြန္တာ Sauerstoffgehalt [mg/L]	, Oxidatives Redoxpotential [mV]
	Jul 2019	12,1 22,0	19,0	7,9	591,0	84,6	7,8	*
	Dez 2019	14,0	6,7	8,1	732,0	92,9	11,2	208,0
	Jun 2020	21,0	2< LOD	8,2	553,0	88,1	8,0	119,0
16	Mai 2018	*	17,0	8,4	78< LOD	117,0	11,6	29< LOD
	Mai 2019	10,6	12,2	7,9	744,0	85,1	9,4	*
	Jul 2019	21,0	17,4	7,4	336,0	52,5	5,0	*
	Dez 2019	10,5	5,6	8,1	721,0	90,9	11,3	218,0
	Jun 2020	2< LOD	19,7	8,1	556,0	8,4	89,4	175,0
16a	Mai 2018	*	18,0	7,3	117< LOD	68,0	7,3	30< LOD
-	Mai 2019	9,9	11,5	7,7	1114,0	7< LOD	7,8	*
	Jul 2019	2< LOD	19,8	7,6	1184,0	74,2	6,8	*
	Dez 2019	11,0	9,0	7,7	918,0	78,6	8,9	98,0
	Jun 2020	21,0	18,2	7,7	848,0	68,1	6,4	10< LOD
16b	Mai 2018	*	24,0	7,9	1245,0	82,0	7,9	145,0
	Mai 2019	13,4	15,1	8,6	1083,0	163,0	16,8	*
	Jul 2019	21,0	21,6	7,6	1186,0	63,3	5,5	*
	Dez 2019	13,0	7,8	7,6	724,0	76,5	8,9	17< LOD
	Jun 2020	2< LOD	20,4	7,5	942,0	34,3	6,1	159,0
17	Mai 2018	*	21,0	7,8	85< LOD	74,0	6,6	171,0
	Mai 2019	10,9	11,7	7,9	833,0	77,5	8,6	*
	Jul 2019	2< LOD	18,4	7,6	493,0	70,5	6,1	*
	Dez 2019	10,5	5,8	8,0	733,0	91,3	11,3	252,0
	Jun 2020	*	*	*	*	*	*	*
18	Mai 2018	*	21,0	7,9	88< LOD	112,0	11,5	29< LOD
	Mai 2019	10,7	11,8	7,9	83< LOD	79,1	8,7	*
	Jul 2019	19,0	17,6	7,4	575,0	44,0	4,2	*
	Dez 2019	9,0	5,6	8,1	731,0	92,2	11,4	223,0
	Jun 2020	21,0	19,6	8,1	589,0	89,2	8,1	167,0
19	Mai 2018	*	22,0	8,0	877,0	91,4	8,2	173,0
	Mai 2019	11,8	12,4	7,8	819,0	77,3	8,5	*
	Jul 2019	24,0	18,4	7,2	40< LOD	9,5	0,9	*
	Dez 2019	7,0	5,3	8,2	718,0	96,3	11,9	231,0
	Jun 2020	21,0	19,8	8,0	608,0	72,1	6,6	203,0

^{* =} keine Probenahme erfolgt

Anhang 9: Anionen und Kationen der Stichtagsprobenahmen

PNStell	Datum	HCO₃	F ⁻	Cl-	NO ₂	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ²⁻	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
01	Mai 2018	382,5	<lod< td=""><td>20,2</td><td>0,1</td><td>0,1</td><td>33,1</td><td>0,1</td><td>38,3</td><td>12,0</td><td>5,0</td><td><lod< td=""><td>1,1</td><td>5,4</td><td>92,8</td><td><lod< td=""><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	20,2	0,1	0,1	33,1	0,1	38,3	12,0	5,0	<lod< td=""><td>1,1</td><td>5,4</td><td>92,8</td><td><lod< td=""><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,1	5,4	92,8	<lod< td=""><td>0,7</td><td><lod< td=""></lod<></td></lod<>	0,7	<lod< td=""></lod<>
	Mai 2019	354,8	0,1	17,4	<lod< td=""><td><lod< td=""><td>38,0</td><td><lod< td=""><td>45,9</td><td>11,2</td><td>4,1</td><td><lod< td=""><td>2,0</td><td>1,4</td><td>167,5</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>38,0</td><td><lod< td=""><td>45,9</td><td>11,2</td><td>4,1</td><td><lod< td=""><td>2,0</td><td>1,4</td><td>167,5</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	38,0	<lod< td=""><td>45,9</td><td>11,2</td><td>4,1</td><td><lod< td=""><td>2,0</td><td>1,4</td><td>167,5</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	45,9	11,2	4,1	<lod< td=""><td>2,0</td><td>1,4</td><td>167,5</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2,0	1,4	167,5	<lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<>	1,0	<lod< td=""></lod<>
	Juli 2019	342,0	0,1	17,9	<lod< td=""><td><lod< td=""><td>30,9</td><td><lod< td=""><td>48,7</td><td>10,7</td><td>4,2</td><td><lod< td=""><td>3,4</td><td>1,5</td><td>165,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>30,9</td><td><lod< td=""><td>48,7</td><td>10,7</td><td>4,2</td><td><lod< td=""><td>3,4</td><td>1,5</td><td>165,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	30,9	<lod< td=""><td>48,7</td><td>10,7</td><td>4,2</td><td><lod< td=""><td>3,4</td><td>1,5</td><td>165,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	48,7	10,7	4,2	<lod< td=""><td>3,4</td><td>1,5</td><td>165,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	3,4	1,5	165,3	<lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<>	1,0	<lod< td=""></lod<>
	Dez 2019	366,1	0,1	18,9	<lod< td=""><td><lod< td=""><td>26,7</td><td>0,5</td><td>52,2</td><td>10,1</td><td>3,8</td><td>0,1</td><td>2,3</td><td>2,7</td><td>166,2</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>26,7</td><td>0,5</td><td>52,2</td><td>10,1</td><td>3,8</td><td>0,1</td><td>2,3</td><td>2,7</td><td>166,2</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<>	26,7	0,5	52,2	10,1	3,8	0,1	2,3	2,7	166,2	0,1	0,8	<lod< td=""></lod<>
	Juni 2020	364,2	0,1	18,4	<lod< td=""><td><lod< td=""><td>42,5</td><td><lod< td=""><td>47,0</td><td>9,9</td><td>3,7</td><td><lod< td=""><td>1,5</td><td>1,4</td><td>163,8</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>42,5</td><td><lod< td=""><td>47,0</td><td>9,9</td><td>3,7</td><td><lod< td=""><td>1,5</td><td>1,4</td><td>163,8</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	42,5	<lod< td=""><td>47,0</td><td>9,9</td><td>3,7</td><td><lod< td=""><td>1,5</td><td>1,4</td><td>163,8</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	47,0	9,9	3,7	<lod< td=""><td>1,5</td><td>1,4</td><td>163,8</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,5	1,4	163,8	<lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<>	0,8	<lod< td=""></lod<>
02	Mai 2018	382,6	0,1	16,7	<lod< td=""><td><lod< td=""><td>14,2</td><td><lod< td=""><td>51,8</td><td>11,5</td><td>5,8</td><td>< LOD</td><td>2,2</td><td>1,5</td><td>168,3</td><td><lod< td=""><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>14,2</td><td><lod< td=""><td>51,8</td><td>11,5</td><td>5,8</td><td>< LOD</td><td>2,2</td><td>1,5</td><td>168,3</td><td><lod< td=""><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	14,2	<lod< td=""><td>51,8</td><td>11,5</td><td>5,8</td><td>< LOD</td><td>2,2</td><td>1,5</td><td>168,3</td><td><lod< td=""><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<>	51,8	11,5	5,8	< LOD	2,2	1,5	168,3	<lod< td=""><td>1,3</td><td><lod< td=""></lod<></td></lod<>	1,3	<lod< td=""></lod<>
	Mai 2019	402,1	0,1	22,1	<lod< td=""><td><lod< td=""><td>17,8</td><td><lod< td=""><td>40,9</td><td>17,5</td><td>4,4</td><td>< LOD</td><td>1,9</td><td>2,0</td><td>169,2</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>17,8</td><td><lod< td=""><td>40,9</td><td>17,5</td><td>4,4</td><td>< LOD</td><td>1,9</td><td>2,0</td><td>169,2</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	17,8	<lod< td=""><td>40,9</td><td>17,5</td><td>4,4</td><td>< LOD</td><td>1,9</td><td>2,0</td><td>169,2</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	40,9	17,5	4,4	< LOD	1,9	2,0	169,2	<lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<>	1,1	<lod< td=""></lod<>
	Juli 2019	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	<lod< td=""></lod<>
	Dez 2019	281,3	0,2	18,5	<lod< td=""><td><lod< td=""><td>24,5</td><td>0,6</td><td>45,9</td><td>12,7</td><td>3,9</td><td>< LOD</td><td>2,4</td><td>2,9</td><td>13< LOD</td><td><lod< td=""><td>0,6</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24,5</td><td>0,6</td><td>45,9</td><td>12,7</td><td>3,9</td><td>< LOD</td><td>2,4</td><td>2,9</td><td>13< LOD</td><td><lod< td=""><td>0,6</td><td><lod< td=""></lod<></td></lod<></td></lod<>	24,5	0,6	45,9	12,7	3,9	< LOD	2,4	2,9	13< LOD	<lod< td=""><td>0,6</td><td><lod< td=""></lod<></td></lod<>	0,6	<lod< td=""></lod<>
	Juni 2020	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	<lod< td=""></lod<>
03	Mai 2018	368,2	0,1	23,9	0,2	0,1	20,1	0,1	49,3	15,2	8,2	<lod< td=""><td>1,9</td><td>3,2</td><td>158,6</td><td>0,1</td><td>1,6</td><td><lod< td=""></lod<></td></lod<>	1,9	3,2	158,6	0,1	1,6	<lod< td=""></lod<>
	Mai 2019	354,2	0,1	23,6	0,1	<lod< td=""><td>14,9</td><td><lod< td=""><td>49,5</td><td>15,2</td><td>8,9</td><td><lod< td=""><td>1,5</td><td>2,8</td><td>151,0</td><td>0,1</td><td>1,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	14,9	<lod< td=""><td>49,5</td><td>15,2</td><td>8,9</td><td><lod< td=""><td>1,5</td><td>2,8</td><td>151,0</td><td>0,1</td><td>1,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	49,5	15,2	8,9	<lod< td=""><td>1,5</td><td>2,8</td><td>151,0</td><td>0,1</td><td>1,8</td><td><lod< td=""></lod<></td></lod<>	1,5	2,8	151,0	0,1	1,8	<lod< td=""></lod<>
	Juli 2019	323,7	0,2	24,3	<lod< td=""><td><lod< td=""><td>8,3</td><td>0,4</td><td>44,3</td><td>15,2</td><td>8,8</td><td><lod< td=""><td>3,0</td><td>4,0</td><td>131,0</td><td>0,1</td><td>1,6</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>8,3</td><td>0,4</td><td>44,3</td><td>15,2</td><td>8,8</td><td><lod< td=""><td>3,0</td><td>4,0</td><td>131,0</td><td>0,1</td><td>1,6</td><td><lod< td=""></lod<></td></lod<></td></lod<>	8,3	0,4	44,3	15,2	8,8	<lod< td=""><td>3,0</td><td>4,0</td><td>131,0</td><td>0,1</td><td>1,6</td><td><lod< td=""></lod<></td></lod<>	3,0	4,0	131,0	0,1	1,6	<lod< td=""></lod<>
	Dez 2019	353,0	0,2	29,7	<lod< td=""><td><lod< td=""><td>40,5</td><td>0,6</td><td>59,9</td><td>14,5</td><td>6,2</td><td><lod< td=""><td>1,8</td><td>3,6</td><td>160,9</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>40,5</td><td>0,6</td><td>59,9</td><td>14,5</td><td>6,2</td><td><lod< td=""><td>1,8</td><td>3,6</td><td>160,9</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	40,5	0,6	59,9	14,5	6,2	<lod< td=""><td>1,8</td><td>3,6</td><td>160,9</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<>	1,8	3,6	160,9	0,1	1,1	<lod< td=""></lod<>
	Juni 2020	312,7	0,2	27,2	0,5	<lod< td=""><td>40,1</td><td>0,4</td><td>47,6</td><td>17,2</td><td>6,5</td><td>0,1</td><td>1,3</td><td>4,2</td><td>136,8</td><td>0,2</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	40,1	0,4	47,6	17,2	6,5	0,1	1,3	4,2	136,8	0,2	1,0	<lod< td=""></lod<>
04	Mai 2018	333,5	0,1	24,7	0,1	<lod< td=""><td>12,8</td><td><lod< td=""><td>40,3</td><td>13,5</td><td>6,1</td><td><lod< td=""><td>0,3</td><td>3,1</td><td>71,5</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	12,8	<lod< td=""><td>40,3</td><td>13,5</td><td>6,1</td><td><lod< td=""><td>0,3</td><td>3,1</td><td>71,5</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	40,3	13,5	6,1	<lod< td=""><td>0,3</td><td>3,1</td><td>71,5</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0,3	3,1	71,5	<lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<>	0,8	<lod< td=""></lod<>
	Mai 2019	288,9	0,1	23,9	0,1	<lod< td=""><td>3,3</td><td><lod< td=""><td>42,5</td><td>16,2</td><td>8,4</td><td><lod< td=""><td>1,0</td><td>3,1</td><td>121,6</td><td>0,2</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	3,3	<lod< td=""><td>42,5</td><td>16,2</td><td>8,4</td><td><lod< td=""><td>1,0</td><td>3,1</td><td>121,6</td><td>0,2</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<>	42,5	16,2	8,4	<lod< td=""><td>1,0</td><td>3,1</td><td>121,6</td><td>0,2</td><td>1,5</td><td><lod< td=""></lod<></td></lod<>	1,0	3,1	121,6	0,2	1,5	<lod< td=""></lod<>
	Juli 2019	243,5	0,2	25,8	<lod< td=""><td><lod< td=""><td>1,2</td><td>1,1</td><td>19,7</td><td>15,1</td><td>7,7</td><td><lod< td=""><td>2,3</td><td>3,5</td><td>86,0</td><td>0,1</td><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,2</td><td>1,1</td><td>19,7</td><td>15,1</td><td>7,7</td><td><lod< td=""><td>2,3</td><td>3,5</td><td>86,0</td><td>0,1</td><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,2	1,1	19,7	15,1	7,7	<lod< td=""><td>2,3</td><td>3,5</td><td>86,0</td><td>0,1</td><td>1,2</td><td><lod< td=""></lod<></td></lod<>	2,3	3,5	86,0	0,1	1,2	<lod< td=""></lod<>
	Dez 2019	320,1	0,2	26,7	0,1	<lod< td=""><td>37,2</td><td>0,6</td><td>56,5</td><td>15,6</td><td>6,0</td><td>0,1</td><td>1,7</td><td>3,9</td><td>150,6</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	37,2	0,6	56,5	15,6	6,0	0,1	1,7	3,9	150,6	0,1	1,0	<lod< td=""></lod<>
	Juni 2020	266,6	0,4	20,3	0,4	<lod< td=""><td>7,0</td><td>0,6</td><td>37,1</td><td>12,9</td><td>6,9</td><td>0,1</td><td>0,9</td><td>3,4</td><td>109,3</td><td>0,4</td><td>1,0</td><td>0,3</td></lod<>	7,0	0,6	37,1	12,9	6,9	0,1	0,9	3,4	109,3	0,4	1,0	0,3
05	Mai 2018	348,9	0,2	26,0	0,1	<lod< td=""><td>1,8</td><td>0,4</td><td>35,6</td><td>16,6</td><td>7,8</td><td>0,1</td><td>2,1</td><td>4,0</td><td>137,8</td><td>0,2</td><td>1,5</td><td>0,3</td></lod<>	1,8	0,4	35,6	16,6	7,8	0,1	2,1	4,0	137,8	0,2	1,5	0,3
	Mai 2019	309,4	0,1	27,2	<lod< td=""><td><lod< td=""><td>2,2</td><td><lod< td=""><td>44,1</td><td>16,6</td><td>8,5</td><td><lod< td=""><td>0,5</td><td>3,1</td><td>127,6</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,2</td><td><lod< td=""><td>44,1</td><td>16,6</td><td>8,5</td><td><lod< td=""><td>0,5</td><td>3,1</td><td>127,6</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	2,2	<lod< td=""><td>44,1</td><td>16,6</td><td>8,5</td><td><lod< td=""><td>0,5</td><td>3,1</td><td>127,6</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<>	44,1	16,6	8,5	<lod< td=""><td>0,5</td><td>3,1</td><td>127,6</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<>	0,5	3,1	127,6	0,1	1,5	<lod< td=""></lod<>
	Juli 2019	206,9	0,1	22,1	<lod< td=""><td><lod< td=""><td>2,7</td><td>0,8</td><td>28,6</td><td>13,6</td><td>6,9</td><td><lod< td=""><td>3,4</td><td>5,6</td><td>84,8</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,7</td><td>0,8</td><td>28,6</td><td>13,6</td><td>6,9</td><td><lod< td=""><td>3,4</td><td>5,6</td><td>84,8</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2,7	0,8	28,6	13,6	6,9	<lod< td=""><td>3,4</td><td>5,6</td><td>84,8</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<>	3,4	5,6	84,8	0,1	1,1	<lod< td=""></lod<>
	Dez 2019	301,1	0,2	32,8	0,2	<lod< td=""><td>62,0</td><td>0,8</td><td>63,0</td><td>19,4</td><td>6,1</td><td>0,1</td><td>1,6</td><td>4,9</td><td>153,4</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	62,0	0,8	63,0	19,4	6,1	0,1	1,6	4,9	153,4	0,1	1,0	<lod< td=""></lod<>

PNStell	e Datum	НСО₃	F ⁻	Cl-	NO ₂	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ² ·	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K ⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
	Juni 2020	251,1	0,3	22,4	0,6	<lod< th=""><th>23,4</th><th>0,8</th><th>43,5</th><th>15,2</th><th>6,3</th><th>0,1</th><th>1,0</th><th>3,8</th><th>110,2</th><th>0,1</th><th>0,9</th><th><lod< th=""></lod<></th></lod<>	23,4	0,8	43,5	15,2	6,3	0,1	1,0	3,8	110,2	0,1	0,9	<lod< th=""></lod<>
06	Mai 2018	342,3	0,1	31,7	0,1	0,1	11,2	<lod< td=""><td>40,9</td><td>19,0</td><td>6,6</td><td><lod< td=""><td>0,2</td><td>3,9</td><td>83,5</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	40,9	19,0	6,6	<lod< td=""><td>0,2</td><td>3,9</td><td>83,5</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0,2	3,9	83,5	<lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<>	0,9	<lod< td=""></lod<>
	Mai 2019	294,1	0,1	26,6	<lod< td=""><td><lod< td=""><td>0,6</td><td><lod< td=""><td>44,1</td><td>16,2</td><td>8,3</td><td><lod< td=""><td>0,1</td><td>3,1</td><td>124,5</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,6</td><td><lod< td=""><td>44,1</td><td>16,2</td><td>8,3</td><td><lod< td=""><td>0,1</td><td>3,1</td><td>124,5</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,6	<lod< td=""><td>44,1</td><td>16,2</td><td>8,3</td><td><lod< td=""><td>0,1</td><td>3,1</td><td>124,5</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<></td></lod<>	44,1	16,2	8,3	<lod< td=""><td>0,1</td><td>3,1</td><td>124,5</td><td>0,1</td><td>1,5</td><td><lod< td=""></lod<></td></lod<>	0,1	3,1	124,5	0,1	1,5	<lod< td=""></lod<>
	Juli 2019	110,1	0,1	5,7	0,3	<lod< td=""><td>4,1</td><td>0,8</td><td>23,2</td><td>25,1</td><td>4,6</td><td>0,1</td><td>2,3</td><td>6,9</td><td>67,3</td><td>0,1</td><td>0,7</td><td><lod< td=""></lod<></td></lod<>	4,1	0,8	23,2	25,1	4,6	0,1	2,3	6,9	67,3	0,1	0,7	<lod< td=""></lod<>
	Dez 2019	291,1	0,2	33,0	0,1	<lod< td=""><td>61,8</td><td>0,6</td><td>52,2</td><td>19,1</td><td>6,1</td><td>0,1</td><td>1,6</td><td>4,7</td><td>151,0</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	61,8	0,6	52,2	19,1	6,1	0,1	1,6	4,7	151,0	0,1	0,9	<lod< td=""></lod<>
	Juni 2020	267,1	0,4	21,5	0,4	<lod< td=""><td>6,8</td><td><lod< td=""><td>40,3</td><td>13,6</td><td>6,6</td><td><lod< td=""><td>0,8</td><td>3,5</td><td>108,3</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	6,8	<lod< td=""><td>40,3</td><td>13,6</td><td>6,6</td><td><lod< td=""><td>0,8</td><td>3,5</td><td>108,3</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	40,3	13,6	6,6	<lod< td=""><td>0,8</td><td>3,5</td><td>108,3</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	0,8	3,5	108,3	0,1	1,0	<lod< td=""></lod<>
06a	Mai 2018	342,7	0,1	36,6	0,1	0,1	14,3	<lod< td=""><td>50,9</td><td>31,2</td><td>7,6</td><td><lod< td=""><td>0,5</td><td>6,3</td><td>86,7</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	50,9	31,2	7,6	<lod< td=""><td>0,5</td><td>6,3</td><td>86,7</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	0,5	6,3	86,7	0,1	0,9	<lod< td=""></lod<>
	Mai 2019	296,6	0,1	49,4	<lod< td=""><td><lod< td=""><td>13,1</td><td><lod< td=""><td>67,1</td><td>43,1</td><td>7,8</td><td><lod< td=""><td>0,9</td><td>9,4</td><td>124,5</td><td>0,1</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13,1</td><td><lod< td=""><td>67,1</td><td>43,1</td><td>7,8</td><td><lod< td=""><td>0,9</td><td>9,4</td><td>124,5</td><td>0,1</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	13,1	<lod< td=""><td>67,1</td><td>43,1</td><td>7,8</td><td><lod< td=""><td>0,9</td><td>9,4</td><td>124,5</td><td>0,1</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<>	67,1	43,1	7,8	<lod< td=""><td>0,9</td><td>9,4</td><td>124,5</td><td>0,1</td><td>1,3</td><td><lod< td=""></lod<></td></lod<>	0,9	9,4	124,5	0,1	1,3	<lod< td=""></lod<>
	Juli 2019	151,3	0,1	5,7	0,3	<lod< td=""><td>4,1</td><td>0,8</td><td>23,2</td><td>23,4</td><td>4,2</td><td>0,1</td><td>2,3</td><td>6,7</td><td>65,9</td><td>0,1</td><td>0,7</td><td><lod< td=""></lod<></td></lod<>	4,1	0,8	23,2	23,4	4,2	0,1	2,3	6,7	65,9	0,1	0,7	<lod< td=""></lod<>
	Dez 2019	281,3	0,2	30,8	<lod< td=""><td><lod< td=""><td>49,9</td><td>0,6</td><td>62,9</td><td>21,2</td><td>7,1</td><td>0,1</td><td>1,8</td><td>5,3</td><td>137,9</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>49,9</td><td>0,6</td><td>62,9</td><td>21,2</td><td>7,1</td><td>0,1</td><td>1,8</td><td>5,3</td><td>137,9</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	49,9	0,6	62,9	21,2	7,1	0,1	1,8	5,3	137,9	0,1	0,9	<lod< td=""></lod<>
	Juni 2020	128,5	0,1	12,0	0,4	<lod< td=""><td>6,1</td><td><lod< td=""><td>26,3</td><td>12,3</td><td>3,2</td><td>0,1</td><td>0,7</td><td>3,9</td><td>54,9</td><td>0,2</td><td>0,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	6,1	<lod< td=""><td>26,3</td><td>12,3</td><td>3,2</td><td>0,1</td><td>0,7</td><td>3,9</td><td>54,9</td><td>0,2</td><td>0,4</td><td><lod< td=""></lod<></td></lod<>	26,3	12,3	3,2	0,1	0,7	3,9	54,9	0,2	0,4	<lod< td=""></lod<>
06b	Mai 2018	367,6	<lod< td=""><td>20,2</td><td>0,1</td><td>0,1</td><td>25,5</td><td><lod< td=""><td>47,3</td><td>13,6</td><td>5,5</td><td><lod< td=""><td>0,9</td><td>2,1</td><td>70,8</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	20,2	0,1	0,1	25,5	<lod< td=""><td>47,3</td><td>13,6</td><td>5,5</td><td><lod< td=""><td>0,9</td><td>2,1</td><td>70,8</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	47,3	13,6	5,5	<lod< td=""><td>0,9</td><td>2,1</td><td>70,8</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0,9	2,1	70,8	<lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<>	0,8	<lod< td=""></lod<>
	Mai 2019	313,7	0,1	20,4	0,2	<lod< td=""><td>19,8</td><td><lod< td=""><td>48,0</td><td>14,3</td><td>5,3</td><td><lod< td=""><td>1,1</td><td>1,9</td><td>142,7</td><td>0,1</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	19,8	<lod< td=""><td>48,0</td><td>14,3</td><td>5,3</td><td><lod< td=""><td>1,1</td><td>1,9</td><td>142,7</td><td>0,1</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<>	48,0	14,3	5,3	<lod< td=""><td>1,1</td><td>1,9</td><td>142,7</td><td>0,1</td><td>1,3</td><td><lod< td=""></lod<></td></lod<>	1,1	1,9	142,7	0,1	1,3	<lod< td=""></lod<>
	Juli 2019	233,7	0,1	12,5	0,1	<lod< td=""><td>8,7</td><td>0,3</td><td>36,1</td><td>10,6</td><td>4,0</td><td>0,3</td><td>1,9</td><td>2,1</td><td>106,5</td><td>< LOD</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	8,7	0,3	36,1	10,6	4,0	0,3	1,9	2,1	106,5	< LOD	0,9	<lod< td=""></lod<>
	Dez 2019	337,2	0,1	18,1	0,1	<lod< td=""><td>17,9</td><td>0,5</td><td>62,9</td><td>13,0</td><td>6,0</td><td><lod< td=""><td>1,9</td><td>2,8</td><td>147,2</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	17,9	0,5	62,9	13,0	6,0	<lod< td=""><td>1,9</td><td>2,8</td><td>147,2</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<>	1,9	2,8	147,2	0,1	1,1	<lod< td=""></lod<>
	Juni 2020	237,4	0,1	18,3	0,2	<lod< td=""><td>16,2</td><td>0,8</td><td>36,4</td><td>12,1</td><td>4,3</td><td>0,1</td><td>1,0</td><td>2,2</td><td>106,3</td><td>0,2</td><td>0,7</td><td><lod< td=""></lod<></td></lod<>	16,2	0,8	36,4	12,1	4,3	0,1	1,0	2,2	106,3	0,2	0,7	<lod< td=""></lod<>
06с	Mai 2018	346,8	<lod< td=""><td>19,5</td><td><lod< td=""><td><lod< td=""><td>30,9</td><td><lod< td=""><td>45,2</td><td>11,2</td><td>4,5</td><td><lod< td=""><td>0,7</td><td>1,7</td><td>89,1</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19,5	<lod< td=""><td><lod< td=""><td>30,9</td><td><lod< td=""><td>45,2</td><td>11,2</td><td>4,5</td><td><lod< td=""><td>0,7</td><td>1,7</td><td>89,1</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>30,9</td><td><lod< td=""><td>45,2</td><td>11,2</td><td>4,5</td><td><lod< td=""><td>0,7</td><td>1,7</td><td>89,1</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	30,9	<lod< td=""><td>45,2</td><td>11,2</td><td>4,5</td><td><lod< td=""><td>0,7</td><td>1,7</td><td>89,1</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	45,2	11,2	4,5	<lod< td=""><td>0,7</td><td>1,7</td><td>89,1</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0,7	1,7	89,1	<lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<>	0,8	<lod< td=""></lod<>
	Mai 2019	357,0	0,1	20,4	0,2	<lod< td=""><td>29,7</td><td><lod< td=""><td>49,5</td><td>13,5</td><td>5,4</td><td><lod< td=""><td>2,0</td><td>1,9</td><td>166,0</td><td>0,2</td><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	29,7	<lod< td=""><td>49,5</td><td>13,5</td><td>5,4</td><td><lod< td=""><td>2,0</td><td>1,9</td><td>166,0</td><td>0,2</td><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<>	49,5	13,5	5,4	<lod< td=""><td>2,0</td><td>1,9</td><td>166,0</td><td>0,2</td><td>1,2</td><td><lod< td=""></lod<></td></lod<>	2,0	1,9	166,0	0,2	1,2	<lod< td=""></lod<>
	Juli 2019	364,6	0,1	21,0	0,1	<lod< td=""><td>17,1</td><td>0,2</td><td>48,5</td><td>14,6</td><td>6,2</td><td><lod< td=""><td>3,8</td><td>3,1</td><td>162,5</td><td>0,2</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<>	17,1	0,2	48,5	14,6	6,2	<lod< td=""><td>3,8</td><td>3,1</td><td>162,5</td><td>0,2</td><td>1,3</td><td><lod< td=""></lod<></td></lod<>	3,8	3,1	162,5	0,2	1,3	<lod< td=""></lod<>
	Dez 2019	395,4	0,1	2< LOD	<lod< td=""><td>0,1</td><td>26,5</td><td>0,3</td><td>57,5</td><td>13,3</td><td>5,0</td><td><lod< td=""><td>2,1</td><td>2,2</td><td>175,8</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0,1	26,5	0,3	57,5	13,3	5,0	<lod< td=""><td>2,1</td><td>2,2</td><td>175,8</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	2,1	2,2	175,8	0,1	1,0	<lod< td=""></lod<>
	Juni 2020	356,2	0,4	17,5	0,1	<lod< td=""><td>33,0</td><td>0,4</td><td>49,6</td><td>10,1</td><td>4,7</td><td>0,1</td><td>1,3</td><td>2,0</td><td>158,5</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	33,0	0,4	49,6	10,1	4,7	0,1	1,3	2,0	158,5	0,1	0,9	<lod< td=""></lod<>
06d	Mai 2018	388,2	<lod< td=""><td>21,2</td><td><lod< td=""><td><lod< td=""><td>31,6</td><td><lod< td=""><td>46,6</td><td>13,7</td><td>4,3</td><td><lod< td=""><td>1,4</td><td>1,4</td><td>112,2</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	21,2	<lod< td=""><td><lod< td=""><td>31,6</td><td><lod< td=""><td>46,6</td><td>13,7</td><td>4,3</td><td><lod< td=""><td>1,4</td><td>1,4</td><td>112,2</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>31,6</td><td><lod< td=""><td>46,6</td><td>13,7</td><td>4,3</td><td><lod< td=""><td>1,4</td><td>1,4</td><td>112,2</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	31,6	<lod< td=""><td>46,6</td><td>13,7</td><td>4,3</td><td><lod< td=""><td>1,4</td><td>1,4</td><td>112,2</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	46,6	13,7	4,3	<lod< td=""><td>1,4</td><td>1,4</td><td>112,2</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,4	1,4	112,2	<lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<>	0,8	<lod< td=""></lod<>
	Mai 2019	351,8	0,1	21,2	<lod< td=""><td><lod< td=""><td>33,4</td><td><lod< td=""><td>51,6</td><td>12,7</td><td>4,5</td><td><lod< td=""><td>2,1</td><td>1,3</td><td>167,2</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>33,4</td><td><lod< td=""><td>51,6</td><td>12,7</td><td>4,5</td><td><lod< td=""><td>2,1</td><td>1,3</td><td>167,2</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	33,4	<lod< td=""><td>51,6</td><td>12,7</td><td>4,5</td><td><lod< td=""><td>2,1</td><td>1,3</td><td>167,2</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	51,6	12,7	4,5	<lod< td=""><td>2,1</td><td>1,3</td><td>167,2</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2,1	1,3	167,2	<lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<>	1,0	<lod< td=""></lod<>
	Juli 2019		0,1	19,8	<lod< td=""><td><lod< td=""><td>31,7</td><td><lod< td=""><td>52,5</td><td>13,6</td><td>4,8</td><td><lod< td=""><td>3,1</td><td>1,4</td><td>171,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>31,7</td><td><lod< td=""><td>52,5</td><td>13,6</td><td>4,8</td><td><lod< td=""><td>3,1</td><td>1,4</td><td>171,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	31,7	<lod< td=""><td>52,5</td><td>13,6</td><td>4,8</td><td><lod< td=""><td>3,1</td><td>1,4</td><td>171,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	52,5	13,6	4,8	<lod< td=""><td>3,1</td><td>1,4</td><td>171,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	3,1	1,4	171,3	<lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<>	1,0	<lod< td=""></lod<>
	Dez 2019	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	Juni 2020	366,2	0,1	18,4	<lod< td=""><td><lod< td=""><td>32,0</td><td>0,9</td><td>50,1</td><td>10,7</td><td>4,2</td><td><lod< td=""><td>1,4</td><td>1,2</td><td>160,3</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>32,0</td><td>0,9</td><td>50,1</td><td>10,7</td><td>4,2</td><td><lod< td=""><td>1,4</td><td>1,2</td><td>160,3</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	32,0	0,9	50,1	10,7	4,2	<lod< td=""><td>1,4</td><td>1,2</td><td>160,3</td><td><lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,4	1,2	160,3	<lod< td=""><td>0,8</td><td><lod< td=""></lod<></td></lod<>	0,8	<lod< td=""></lod<>

PNStelle	Datum	НСО₃	F-	CI-	NO ₂	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ²⁻	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K ⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
06e	Mai 2018	249,2	0,1	12,9	<lod< td=""><td><lod< td=""><td>45,1</td><td>0,1</td><td>46,7</td><td>9,9</td><td>4,2</td><td><lod< td=""><td>1,9</td><td>1,2</td><td>173,3</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>45,1</td><td>0,1</td><td>46,7</td><td>9,9</td><td>4,2</td><td><lod< td=""><td>1,9</td><td>1,2</td><td>173,3</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	45,1	0,1	46,7	9,9	4,2	<lod< td=""><td>1,9</td><td>1,2</td><td>173,3</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,9	1,2	173,3	<lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<>	1,1	<lod< td=""></lod<>
	Mai 2019	371,0	0,1	12,4	<lod< td=""><td><lod< td=""><td>39,8</td><td></td><td>44,5</td><td>9,0</td><td>4,1</td><td><lod< td=""><td>1,9</td><td>1,2</td><td>172,1</td><td><lod< td=""><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>39,8</td><td></td><td>44,5</td><td>9,0</td><td>4,1</td><td><lod< td=""><td>1,9</td><td>1,2</td><td>172,1</td><td><lod< td=""><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	39,8		44,5	9,0	4,1	<lod< td=""><td>1,9</td><td>1,2</td><td>172,1</td><td><lod< td=""><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,9	1,2	172,1	<lod< td=""><td>1,2</td><td><lod< td=""></lod<></td></lod<>	1,2	<lod< td=""></lod<>
	Juli 2019	369,2	0,1	13,1	<lod< td=""><td><lod< td=""><td>35,4</td><td>0,1</td><td>46,0</td><td>10,5</td><td>4,3</td><td><lod< td=""><td>3,0</td><td>1,2</td><td>178,6</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>35,4</td><td>0,1</td><td>46,0</td><td>10,5</td><td>4,3</td><td><lod< td=""><td>3,0</td><td>1,2</td><td>178,6</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	35,4	0,1	46,0	10,5	4,3	<lod< td=""><td>3,0</td><td>1,2</td><td>178,6</td><td><lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	3,0	1,2	178,6	<lod< td=""><td>1,1</td><td><lod< td=""></lod<></td></lod<>	1,1	<lod< td=""></lod<>
	Dez 2019	371,0	0,1	14,2	<lod< td=""><td><lod< td=""><td>35,9</td><td>0,3</td><td>49,0</td><td>9,8</td><td>3,4</td><td><lod< td=""><td>1,9</td><td>1,2</td><td>17< LOD</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>35,9</td><td>0,3</td><td>49,0</td><td>9,8</td><td>3,4</td><td><lod< td=""><td>1,9</td><td>1,2</td><td>17< LOD</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	35,9	0,3	49,0	9,8	3,4	<lod< td=""><td>1,9</td><td>1,2</td><td>17< LOD</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,9	1,2	17< LOD	<lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<>	0,9	<lod< td=""></lod<>
	Juni 2020	378,0	0,3	12,9	<lod< td=""><td><lod< td=""><td>42,0</td><td>0,5</td><td>46,0</td><td>9,8</td><td>3,9</td><td><lod< td=""><td>1,3</td><td>1,1</td><td>169,1</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>42,0</td><td>0,5</td><td>46,0</td><td>9,8</td><td>3,9</td><td><lod< td=""><td>1,3</td><td>1,1</td><td>169,1</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	42,0	0,5	46,0	9,8	3,9	<lod< td=""><td>1,3</td><td>1,1</td><td>169,1</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1,3	1,1	169,1	<lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<>	0,9	<lod< td=""></lod<>
07	Mai 2018	389,4	0,2	56,2	0,1	0,4	10,4	0,1	56,0	39,7	8,2	<lod< td=""><td>0,3</td><td>5,3</td><td>89,3</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0,3	5,3	89,3	<lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<>	1,0	<lod< td=""></lod<>
	Mai 2019	295,7	0,1	42,4	<lod< td=""><td><lod< td=""><td>10,2</td><td><lod< td=""><td>61,0</td><td>35,6</td><td>7,5</td><td><lod< td=""><td>0,6</td><td>7,4</td><td>123,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10,2</td><td><lod< td=""><td>61,0</td><td>35,6</td><td>7,5</td><td><lod< td=""><td>0,6</td><td>7,4</td><td>123,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	10,2	<lod< td=""><td>61,0</td><td>35,6</td><td>7,5</td><td><lod< td=""><td>0,6</td><td>7,4</td><td>123,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	61,0	35,6	7,5	<lod< td=""><td>0,6</td><td>7,4</td><td>123,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<>	0,6	7,4	123,5	0,1	1,4	<lod< td=""></lod<>
	Juli 2019	198,6	0,1	26,3	0,1	<lod< td=""><td>7,6</td><td>0,4</td><td>44,8</td><td>25,5</td><td>5,2</td><td>0,1</td><td>2,7</td><td>6,6</td><td>85,9</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	7,6	0,4	44,8	25,5	5,2	0,1	2,7	6,6	85,9	0,1	0,9	<lod< td=""></lod<>
	Dez 2019	284,1	0,2	31,5	< LOD	<lod< td=""><td>56,5</td><td>0,6</td><td>61,0</td><td>2< LOD</td><td>6,4</td><td>0,1</td><td>1,7</td><td>4,9</td><td>142,3</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	56,5	0,6	61,0	2< LOD	6,4	0,1	1,7	4,9	142,3	0,1	0,9	<lod< td=""></lod<>
	Juni 2020	139,0	0,1	12,7	0,3	<lod< td=""><td>5,2</td><td>0,6</td><td>24,7</td><td>11,4</td><td>3,4</td><td>0,1</td><td>0,7</td><td>3,7</td><td>58,2</td><td>0,3</td><td>0,4</td><td><lod< td=""></lod<></td></lod<>	5,2	0,6	24,7	11,4	3,4	0,1	0,7	3,7	58,2	0,3	0,4	<lod< td=""></lod<>
08	Mai 2018	288,2	0,2	44,3	0,1	0,1	12,1	0,4	59,1	37,4	7,3	0,2	1,9	8,8	132,4	0,3	1,4	0,1
	Mai 2019	296,6	0,1	36,5	<lod< td=""><td><lod< td=""><td>10,1</td><td><lod< td=""><td>56,2</td><td>30,4</td><td>7,5</td><td><lod< td=""><td>0,6</td><td>6,0</td><td>127,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10,1</td><td><lod< td=""><td>56,2</td><td>30,4</td><td>7,5</td><td><lod< td=""><td>0,6</td><td>6,0</td><td>127,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	10,1	<lod< td=""><td>56,2</td><td>30,4</td><td>7,5</td><td><lod< td=""><td>0,6</td><td>6,0</td><td>127,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	56,2	30,4	7,5	<lod< td=""><td>0,6</td><td>6,0</td><td>127,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<>	0,6	6,0	127,5	0,1	1,4	<lod< td=""></lod<>
	Juli 2019	130,6	0,1	10,3	< LOD	<lod< td=""><td>4,4</td><td>0,4</td><td>28,2</td><td>13,3</td><td>3,7</td><td>0,1</td><td>2,0</td><td>4,2</td><td>58,5</td><td>0,1</td><td>0,6</td><td><lod< td=""></lod<></td></lod<>	4,4	0,4	28,2	13,3	3,7	0,1	2,0	4,2	58,5	0,1	0,6	<lod< td=""></lod<>
	Dez 2019	286,2	0,2	32,1	< LOD	<lod< td=""><td>56,3</td><td>0,8</td><td>63,3</td><td>19,2</td><td>6,4</td><td>0,1</td><td>1,7</td><td>5,0</td><td>146,8</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	56,3	0,8	63,3	19,2	6,4	0,1	1,7	5,0	146,8	0,1	0,9	<lod< td=""></lod<>
	Juni 2020	167,1	0,1	13,6	0,4	<lod< td=""><td>5,3</td><td>0,7</td><td>28,9</td><td>12,1</td><td>4,2</td><td>0,1</td><td>0,8</td><td>3,7</td><td>72,9</td><td>0,2</td><td>0,6</td><td>0,1</td></lod<>	5,3	0,7	28,9	12,1	4,2	0,1	0,8	3,7	72,9	0,2	0,6	0,1
08a	Mai 2018	335,1	0,1	34,0	< LOD	0,1	13,9	0,1	48,7	24,8	7,7	<lod< td=""><td>0,4</td><td>4,9</td><td>87,7</td><td><lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0,4	4,9	87,7	<lod< td=""><td>1,0</td><td><lod< td=""></lod<></td></lod<>	1,0	<lod< td=""></lod<>
	Mai 2019	321,0	0,3	51,1	<lod< td=""><td><lod< td=""><td>0,6</td><td><lod< td=""><td>67,7</td><td>52,6</td><td>9,9</td><td><lod< td=""><td>0,4</td><td>3,3</td><td>121,1</td><td>0,2</td><td>1,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,6</td><td><lod< td=""><td>67,7</td><td>52,6</td><td>9,9</td><td><lod< td=""><td>0,4</td><td>3,3</td><td>121,1</td><td>0,2</td><td>1,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,6	<lod< td=""><td>67,7</td><td>52,6</td><td>9,9</td><td><lod< td=""><td>0,4</td><td>3,3</td><td>121,1</td><td>0,2</td><td>1,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	67,7	52,6	9,9	<lod< td=""><td>0,4</td><td>3,3</td><td>121,1</td><td>0,2</td><td>1,9</td><td><lod< td=""></lod<></td></lod<>	0,4	3,3	121,1	0,2	1,9	<lod< td=""></lod<>
	Juli 2019	194,1	0,3	27,7	< LOD	<lod< td=""><td>6,3</td><td>0,5</td><td>63,0</td><td>39,2</td><td>6,6</td><td>0,1</td><td>2,6</td><td>7,0</td><td>80,2</td><td>0,2</td><td>1,1</td><td><lod< td=""></lod<></td></lod<>	6,3	0,5	63,0	39,2	6,6	0,1	2,6	7,0	80,2	0,2	1,1	<lod< td=""></lod<>
	Dez 2019	<lod< td=""><td>0,3</td><td>34,7</td><td><lod< td=""><td><lod< td=""><td>60,6</td><td>0,7</td><td>62,7</td><td>22,2</td><td>5,9</td><td>0,1</td><td>1,5</td><td>4,2</td><td>138,6</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,3	34,7	<lod< td=""><td><lod< td=""><td>60,6</td><td>0,7</td><td>62,7</td><td>22,2</td><td>5,9</td><td>0,1</td><td>1,5</td><td>4,2</td><td>138,6</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>60,6</td><td>0,7</td><td>62,7</td><td>22,2</td><td>5,9</td><td>0,1</td><td>1,5</td><td>4,2</td><td>138,6</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<>	60,6	0,7	62,7	22,2	5,9	0,1	1,5	4,2	138,6	0,1	0,8	<lod< td=""></lod<>
	Juni 2020	134,3	0,2	18,0	0,4	<lod< td=""><td>4,9</td><td>0,8</td><td>42,9</td><td>19,3</td><td>4,9</td><td>0,1</td><td>0,8</td><td>5,7</td><td>59,2</td><td>0,3</td><td>0,6</td><td><lod< td=""></lod<></td></lod<>	4,9	0,8	42,9	19,3	4,9	0,1	0,8	5,7	59,2	0,3	0,6	<lod< td=""></lod<>
09	Mai 2018	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	Mai 2019	293,2	0,1	46,7	<lod< td=""><td><lod< td=""><td>9,3</td><td><lod< td=""><td>62,7</td><td>38,3</td><td>7,7</td><td><lod< td=""><td>0,6</td><td>8,1</td><td>121,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9,3</td><td><lod< td=""><td>62,7</td><td>38,3</td><td>7,7</td><td><lod< td=""><td>0,6</td><td>8,1</td><td>121,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	9,3	<lod< td=""><td>62,7</td><td>38,3</td><td>7,7</td><td><lod< td=""><td>0,6</td><td>8,1</td><td>121,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	62,7	38,3	7,7	<lod< td=""><td>0,6</td><td>8,1</td><td>121,5</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<>	0,6	8,1	121,5	0,1	1,4	<lod< td=""></lod<>
	Juli 2019	139,1	0,1	14,8	0,1	<lod< td=""><td>4,7</td><td>0,4</td><td>35,8</td><td>17,4</td><td>4,1</td><td>0,1</td><td>2,2</td><td>5,3</td><td>61,5</td><td>0,1</td><td>0,6</td><td><lod< td=""></lod<></td></lod<>	4,7	0,4	35,8	17,4	4,1	0,1	2,2	5,3	61,5	0,1	0,6	<lod< td=""></lod<>
	Dez 2019	281,6	0,2	32,4	0,1	<lod< td=""><td>57,0</td><td>0,9</td><td>60,7</td><td>20,9</td><td>6,4</td><td>0,1</td><td>1,7</td><td>4,9</td><td>146,8</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	57,0	0,9	60,7	20,9	6,4	0,1	1,7	4,9	146,8	0,1	0,9	<lod< td=""></lod<>

PNStelle	Datum	НСО₃	F ⁻	CI-	NO ₂ -	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ²⁻	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
	Juni 2020	154,1	0,1	13,9	0,3	<lod< th=""><th>5,1</th><th>0,8</th><th>28,1</th><th>13,2</th><th>3,8</th><th>0,1</th><th>0,8</th><th>3,9</th><th>66,7</th><th>0,3</th><th>0,5</th><th>0,1</th></lod<>	5,1	0,8	28,1	13,2	3,8	0,1	0,8	3,9	66,7	0,3	0,5	0,1
10	Mai 2018	327,1	0,1	53,9	0,2	0,2	13,7	<lod< td=""><td>54,1</td><td>29,6</td><td>8,1</td><td><lod< td=""><td>0,3</td><td>5,5</td><td>91,1</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	54,1	29,6	8,1	<lod< td=""><td>0,3</td><td>5,5</td><td>91,1</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<>	0,3	5,5	91,1	0,1	1,1	<lod< td=""></lod<>
	Mai 2019	283,1	0,1	52,5	0,1	<lod< td=""><td>8,5</td><td><lod< td=""><td>64,1</td><td>36,4</td><td>8,8</td><td><lod< td=""><td>0,4</td><td>7,2</td><td>131,8</td><td>0,3</td><td>1,7</td><td>0,1</td></lod<></td></lod<></td></lod<>	8,5	<lod< td=""><td>64,1</td><td>36,4</td><td>8,8</td><td><lod< td=""><td>0,4</td><td>7,2</td><td>131,8</td><td>0,3</td><td>1,7</td><td>0,1</td></lod<></td></lod<>	64,1	36,4	8,8	<lod< td=""><td>0,4</td><td>7,2</td><td>131,8</td><td>0,3</td><td>1,7</td><td>0,1</td></lod<>	0,4	7,2	131,8	0,3	1,7	0,1
	Juli 2019	124,8	0,2	36,4	0,1	<lod< td=""><td>5,4</td><td><lod< td=""><td>42,1</td><td>25,3</td><td>4,9</td><td><lod< td=""><td>1,9</td><td>7,6</td><td>66,3</td><td>1,2</td><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	5,4	<lod< td=""><td>42,1</td><td>25,3</td><td>4,9</td><td><lod< td=""><td>1,9</td><td>7,6</td><td>66,3</td><td>1,2</td><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<>	42,1	25,3	4,9	<lod< td=""><td>1,9</td><td>7,6</td><td>66,3</td><td>1,2</td><td>0,7</td><td><lod< td=""></lod<></td></lod<>	1,9	7,6	66,3	1,2	0,7	<lod< td=""></lod<>
	Dez 2019	299,9	0,2	33,0	0,1	<lod< td=""><td>54,7</td><td><lod< td=""><td>66,3</td><td>22,8</td><td>7,0</td><td>0,1</td><td>1,8</td><td>5,0</td><td>155,5</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	54,7	<lod< td=""><td>66,3</td><td>22,8</td><td>7,0</td><td>0,1</td><td>1,8</td><td>5,0</td><td>155,5</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	66,3	22,8	7,0	0,1	1,8	5,0	155,5	0,1	1,0	<lod< td=""></lod<>
	Juni 2020	136,8	0,1	17,1	0,6	<lod< td=""><td>5,9</td><td>0,6</td><td>33,8</td><td>17,3</td><td>3,8</td><td>0,1</td><td>0,8</td><td>5,1</td><td>59,0</td><td>0,2</td><td>0,5</td><td><lod< td=""></lod<></td></lod<>	5,9	0,6	33,8	17,3	3,8	0,1	0,8	5,1	59,0	0,2	0,5	<lod< td=""></lod<>
10a	Mai 2018	312,7	0,5	79,0	0,1	0,1	6,1	0,6	94,6	54,3	11,6	<lod< td=""><td>2,2</td><td>5,1</td><td>135,4</td><td>0,2</td><td>2,2</td><td>0,1</td></lod<>	2,2	5,1	135,4	0,2	2,2	0,1
	Mai 2019	377,4	0,3	75,9	<lod< td=""><td><lod< td=""><td>3,1</td><td><lod< td=""><td>115,7</td><td>70,7</td><td>14,5</td><td><lod< td=""><td>1,3</td><td>5,1</td><td>162,7</td><td>0,3</td><td>2,4</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3,1</td><td><lod< td=""><td>115,7</td><td>70,7</td><td>14,5</td><td><lod< td=""><td>1,3</td><td>5,1</td><td>162,7</td><td>0,3</td><td>2,4</td><td>0,1</td></lod<></td></lod<></td></lod<>	3,1	<lod< td=""><td>115,7</td><td>70,7</td><td>14,5</td><td><lod< td=""><td>1,3</td><td>5,1</td><td>162,7</td><td>0,3</td><td>2,4</td><td>0,1</td></lod<></td></lod<>	115,7	70,7	14,5	<lod< td=""><td>1,3</td><td>5,1</td><td>162,7</td><td>0,3</td><td>2,4</td><td>0,1</td></lod<>	1,3	5,1	162,7	0,3	2,4	0,1
	Juli 2019	119,3	0,2	24,2	0,1	< LOD	5,0	0,3	42,2	22,1	4,5	<lod< td=""><td>1,7</td><td>3,0</td><td>55,3</td><td>0,1</td><td>0,6</td><td><lod< td=""></lod<></td></lod<>	1,7	3,0	55,3	0,1	0,6	<lod< td=""></lod<>
	Dez 2019	297,5	0,2	48,0	0,1	0,1	50,9	0,5	82,3	30,6	10,2	<lod< td=""><td>2,1</td><td>5,2</td><td>155,9</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	2,1	5,2	155,9	0,1	1,0	<lod< td=""></lod<>
	Juni 2020	151,4	0,2	31,0	0,3	<lod< td=""><td>5,4</td><td>0,9</td><td>67,2</td><td>31,0</td><td>6,1</td><td>0,1</td><td>0,8</td><td>3,8</td><td>67,8</td><td>0,2</td><td>0,7</td><td>0,1</td></lod<>	5,4	0,9	67,2	31,0	6,1	0,1	0,8	3,8	67,8	0,2	0,7	0,1
10b	Mai 2018	314,7	0,3	135,6	<lod< td=""><td>0,1</td><td>1,9</td><td>0,9</td><td>124,4</td><td>91,8</td><td>17,5</td><td><lod< td=""><td>2,5</td><td>6,0</td><td>139,4</td><td>0,3</td><td>2,3</td><td>0,3</td></lod<></td></lod<>	0,1	1,9	0,9	124,4	91,8	17,5	<lod< td=""><td>2,5</td><td>6,0</td><td>139,4</td><td>0,3</td><td>2,3</td><td>0,3</td></lod<>	2,5	6,0	139,4	0,3	2,3	0,3
	Mai 2019	347,5	0,5	95,2	<lod< td=""><td>0,2</td><td>1,5</td><td><lod< td=""><td>106,4</td><td>95,4</td><td>14,7</td><td><lod< td=""><td>0,4</td><td>4,5</td><td>129,2</td><td>0,6</td><td>2,1</td><td>0,1</td></lod<></td></lod<></td></lod<>	0,2	1,5	<lod< td=""><td>106,4</td><td>95,4</td><td>14,7</td><td><lod< td=""><td>0,4</td><td>4,5</td><td>129,2</td><td>0,6</td><td>2,1</td><td>0,1</td></lod<></td></lod<>	106,4	95,4	14,7	<lod< td=""><td>0,4</td><td>4,5</td><td>129,2</td><td>0,6</td><td>2,1</td><td>0,1</td></lod<>	0,4	4,5	129,2	0,6	2,1	0,1
	Juli 2019	119,0	0,2	84,3	0,3	<lod< td=""><td>5,8</td><td>0,4</td><td>58,5</td><td>61,3</td><td>7,1</td><td><lod< td=""><td>1,9</td><td>4,0</td><td>65,0</td><td>0,1</td><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<>	5,8	0,4	58,5	61,3	7,1	<lod< td=""><td>1,9</td><td>4,0</td><td>65,0</td><td>0,1</td><td>0,7</td><td><lod< td=""></lod<></td></lod<>	1,9	4,0	65,0	0,1	0,7	<lod< td=""></lod<>
	Dez 2019	295,0	0,2	51,1	0,1	<lod< td=""><td>56,5</td><td>0,5</td><td>72,6</td><td>31,0</td><td>10,3</td><td><lod< td=""><td>2,0</td><td>5,0</td><td>15< LOD</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	56,5	0,5	72,6	31,0	10,3	<lod< td=""><td>2,0</td><td>5,0</td><td>15< LOD</td><td>0,1</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	2,0	5,0	15< LOD	0,1	0,9	<lod< td=""></lod<>
	Juni 2020	137,7	0,2	29,6	0,1	<lod< td=""><td>4,2</td><td>1,0</td><td>55,8</td><td>28,0</td><td>5,7</td><td><lod< td=""><td>0,7</td><td>2,9</td><td>61,4</td><td>0,2</td><td>0,5</td><td><lod< td=""></lod<></td></lod<></td></lod<>	4,2	1,0	55,8	28,0	5,7	<lod< td=""><td>0,7</td><td>2,9</td><td>61,4</td><td>0,2</td><td>0,5</td><td><lod< td=""></lod<></td></lod<>	0,7	2,9	61,4	0,2	0,5	<lod< td=""></lod<>
11	Mai 2018	333,8	0,1	55,5	0,1	0,5	11,9	<lod< td=""><td>56,7</td><td>32,6</td><td>8,6</td><td><lod< td=""><td>0,3</td><td>5,6</td><td>89,3</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	56,7	32,6	8,6	<lod< td=""><td>0,3</td><td>5,6</td><td>89,3</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	0,3	5,6	89,3	0,1	1,0	<lod< td=""></lod<>
	Mai 2019	283,8	0,2	54,6	<lod< td=""><td><lod< td=""><td>6,8</td><td><lod< td=""><td>64,1</td><td>37,7</td><td>8,8</td><td>0,1</td><td>0,5</td><td>6,5</td><td>136,7</td><td>0,4</td><td>1,7</td><td>0,1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6,8</td><td><lod< td=""><td>64,1</td><td>37,7</td><td>8,8</td><td>0,1</td><td>0,5</td><td>6,5</td><td>136,7</td><td>0,4</td><td>1,7</td><td>0,1</td></lod<></td></lod<>	6,8	<lod< td=""><td>64,1</td><td>37,7</td><td>8,8</td><td>0,1</td><td>0,5</td><td>6,5</td><td>136,7</td><td>0,4</td><td>1,7</td><td>0,1</td></lod<>	64,1	37,7	8,8	0,1	0,5	6,5	136,7	0,4	1,7	0,1
	Juli 2019	140,7	0,2	50,1	< LOD	<lod< td=""><td>6,4</td><td><lod< td=""><td>50,1</td><td>31,9</td><td>5,3</td><td><lod< td=""><td>2,1</td><td>8,9</td><td>73,4</td><td>1,0</td><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	6,4	<lod< td=""><td>50,1</td><td>31,9</td><td>5,3</td><td><lod< td=""><td>2,1</td><td>8,9</td><td>73,4</td><td>1,0</td><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<>	50,1	31,9	5,3	<lod< td=""><td>2,1</td><td>8,9</td><td>73,4</td><td>1,0</td><td>0,7</td><td><lod< td=""></lod<></td></lod<>	2,1	8,9	73,4	1,0	0,7	<lod< td=""></lod<>
	Dez 2019	299,3	0,2	34,5	0,1	<lod< td=""><td>54,8</td><td>0,5</td><td>68,0</td><td>23,1</td><td>7,2</td><td>0,1</td><td>1,8</td><td>5,0</td><td>155,1</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	54,8	0,5	68,0	23,1	7,2	0,1	1,8	5,0	155,1	0,1	1,0	<lod< td=""></lod<>
	Juni 2020	145,9	0,2	21,6	0,6	<lod< td=""><td>6,4</td><td>0,6</td><td>38,3</td><td>20,3</td><td>4,0</td><td>0,1</td><td>0,8</td><td>5,9</td><td>62,3</td><td>0,2</td><td>0,5</td><td><lod< td=""></lod<></td></lod<>	6,4	0,6	38,3	20,3	4,0	0,1	0,8	5,9	62,3	0,2	0,5	<lod< td=""></lod<>
11a	Mai 2018	349,8	0,2	82,9	<lod< td=""><td>0,1</td><td>6,4</td><td><lod< td=""><td>109,7</td><td>59,3</td><td>11,1</td><td><lod< td=""><td>1,3</td><td>6,5</td><td>104,4</td><td>0,2</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,1	6,4	<lod< td=""><td>109,7</td><td>59,3</td><td>11,1</td><td><lod< td=""><td>1,3</td><td>6,5</td><td>104,4</td><td>0,2</td><td>1,3</td><td><lod< td=""></lod<></td></lod<></td></lod<>	109,7	59,3	11,1	<lod< td=""><td>1,3</td><td>6,5</td><td>104,4</td><td>0,2</td><td>1,3</td><td><lod< td=""></lod<></td></lod<>	1,3	6,5	104,4	0,2	1,3	<lod< td=""></lod<>
	Mai 2019	346,6	0,3	100,3	<lod< td=""><td><lod< td=""><td>3,0</td><td><lod< td=""><td>145,4</td><td>73,3</td><td>15,1</td><td>0,1</td><td>1,7</td><td>5,7</td><td>183,1</td><td>0,1</td><td>2,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3,0</td><td><lod< td=""><td>145,4</td><td>73,3</td><td>15,1</td><td>0,1</td><td>1,7</td><td>5,7</td><td>183,1</td><td>0,1</td><td>2,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	3,0	<lod< td=""><td>145,4</td><td>73,3</td><td>15,1</td><td>0,1</td><td>1,7</td><td>5,7</td><td>183,1</td><td>0,1</td><td>2,8</td><td><lod< td=""></lod<></td></lod<>	145,4	73,3	15,1	0,1	1,7	5,7	183,1	0,1	2,8	<lod< td=""></lod<>
	Juli 2019	258,1	0,3	74,4	<lod< td=""><td><lod< td=""><td>3,8</td><td>0,4</td><td>130,1</td><td>63,3</td><td>10,6</td><td><lod< td=""><td>3,0</td><td>6,8</td><td>140,9</td><td>0,1</td><td>1,7</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3,8</td><td>0,4</td><td>130,1</td><td>63,3</td><td>10,6</td><td><lod< td=""><td>3,0</td><td>6,8</td><td>140,9</td><td>0,1</td><td>1,7</td><td><lod< td=""></lod<></td></lod<></td></lod<>	3,8	0,4	130,1	63,3	10,6	<lod< td=""><td>3,0</td><td>6,8</td><td>140,9</td><td>0,1</td><td>1,7</td><td><lod< td=""></lod<></td></lod<>	3,0	6,8	140,9	0,1	1,7	<lod< td=""></lod<>
	Dez 2019	285,9	0,3	36,7	<lod< td=""><td><lod< td=""><td>32,6</td><td>0,6</td><td>85,9</td><td>33,3</td><td>7,7</td><td>0,1</td><td>2,0</td><td>6,2</td><td>145,0</td><td>1,3</td><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>32,6</td><td>0,6</td><td>85,9</td><td>33,3</td><td>7,7</td><td>0,1</td><td>2,0</td><td>6,2</td><td>145,0</td><td>1,3</td><td>0,9</td><td><lod< td=""></lod<></td></lod<>	32,6	0,6	85,9	33,3	7,7	0,1	2,0	6,2	145,0	1,3	0,9	<lod< td=""></lod<>

PNStelle	Datum	НСО₃	F ⁻	CI-	NO ₂	Br⁻	NO ₃	PO ₄ ³⁻	SO ₄ ²⁻	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn ³⁺
	Juni 2020	204,4	0,3	74,8	<lod< th=""><th><lod< th=""><th>3,2</th><th>0,7</th><th>113,/</th><th>56,8</th><th>7,8</th><th>0,1</th><th>1,1</th><th>6,0</th><th>101,6</th><th>0,2</th><th>0,7</th><th>0,2</th></lod<></th></lod<>	<lod< th=""><th>3,2</th><th>0,7</th><th>113,/</th><th>56,8</th><th>7,8</th><th>0,1</th><th>1,1</th><th>6,0</th><th>101,6</th><th>0,2</th><th>0,7</th><th>0,2</th></lod<>	3,2	0,7	113,/	56,8	7,8	0,1	1,1	6,0	101,6	0,2	0,7	0,2
Aasee	Mai 2018	222,7	0,2	5< LOD	<lod< td=""><td>0,1</td><td>0,1</td><td>0,1</td><td>52,3</td><td>31,8</td><td>7,7</td><td>0,2</td><td>1,8</td><td>5,9</td><td>92,7</td><td>0,4</td><td>1,2</td><td>0,2</td></lod<>	0,1	0,1	0,1	52,3	31,8	7,7	0,2	1,8	5,9	92,7	0,4	1,2	0,2
	Mai 2019	266,4	0,2	48,7	<lod< td=""><td><lod< td=""><td>3,0</td><td><lod< td=""><td>71,1</td><td>32,6</td><td>8,6</td><td><lod< td=""><td>0,7</td><td>5,8</td><td>123,0</td><td>0,1</td><td>1,4</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3,0</td><td><lod< td=""><td>71,1</td><td>32,6</td><td>8,6</td><td><lod< td=""><td>0,7</td><td>5,8</td><td>123,0</td><td>0,1</td><td>1,4</td><td>0,1</td></lod<></td></lod<></td></lod<>	3,0	<lod< td=""><td>71,1</td><td>32,6</td><td>8,6</td><td><lod< td=""><td>0,7</td><td>5,8</td><td>123,0</td><td>0,1</td><td>1,4</td><td>0,1</td></lod<></td></lod<>	71,1	32,6	8,6	<lod< td=""><td>0,7</td><td>5,8</td><td>123,0</td><td>0,1</td><td>1,4</td><td>0,1</td></lod<>	0,7	5,8	123,0	0,1	1,4	0,1
	Juli 2019	254,5	0,3	50,5	<lod< td=""><td><lod< td=""><td>< LOD</td><td>0,4</td><td>47,3</td><td>35,9</td><td>8,2</td><td>0,1</td><td>4,2</td><td>6,5</td><td>111,1</td><td>0,2</td><td>1,1</td><td>0,3</td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>0,4</td><td>47,3</td><td>35,9</td><td>8,2</td><td>0,1</td><td>4,2</td><td>6,5</td><td>111,1</td><td>0,2</td><td>1,1</td><td>0,3</td></lod<>	< LOD	0,4	47,3	35,9	8,2	0,1	4,2	6,5	111,1	0,2	1,1	0,3
	Dez 2019	261,5	0,2	32,1	0,1	< LOD	46,0	0,6	59,3	24,4	6,9	0,1	1,7	5,3	137,0	0,2	0,9	<lod< td=""></lod<>
	Juni 2020	206,2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>29,0</td><td>6,5</td><td>< LOD</td><td>1,3</td><td>5,2</td><td>84,8</td><td>0,2</td><td>0,8</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>29,0</td><td>6,5</td><td>< LOD</td><td>1,3</td><td>5,2</td><td>84,8</td><td>0,2</td><td>0,8</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>29,0</td><td>6,5</td><td>< LOD</td><td>1,3</td><td>5,2</td><td>84,8</td><td>0,2</td><td>0,8</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>29,0</td><td>6,5</td><td>< LOD</td><td>1,3</td><td>5,2</td><td>84,8</td><td>0,2</td><td>0,8</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>29,0</td><td>6,5</td><td>< LOD</td><td>1,3</td><td>5,2</td><td>84,8</td><td>0,2</td><td>0,8</td><td>0,1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>29,0</td><td>6,5</td><td>< LOD</td><td>1,3</td><td>5,2</td><td>84,8</td><td>0,2</td><td>0,8</td><td>0,1</td></lod<></td></lod<>	<lod< td=""><td>29,0</td><td>6,5</td><td>< LOD</td><td>1,3</td><td>5,2</td><td>84,8</td><td>0,2</td><td>0,8</td><td>0,1</td></lod<>	29,0	6,5	< LOD	1,3	5,2	84,8	0,2	0,8	0,1
12	Mai 2018	255,1	0,1	47,3	<lod< td=""><td>0,1</td><td>10,9</td><td><lod< td=""><td>58,4</td><td>29,4</td><td>8,3</td><td><lod< td=""><td>0,1</td><td>5,0</td><td>82,3</td><td>< LOD</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,1	10,9	<lod< td=""><td>58,4</td><td>29,4</td><td>8,3</td><td><lod< td=""><td>0,1</td><td>5,0</td><td>82,3</td><td>< LOD</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	58,4	29,4	8,3	<lod< td=""><td>0,1</td><td>5,0</td><td>82,3</td><td>< LOD</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	0,1	5,0	82,3	< LOD	1,0	<lod< td=""></lod<>
	Mai 2019	268,5	0,2	48,4	<lod< td=""><td><lod< td=""><td>2,3</td><td><lod< td=""><td>75,0</td><td>33,9</td><td>9,3</td><td><lod< td=""><td>0,8</td><td>6,2</td><td>127,4</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,3</td><td><lod< td=""><td>75,0</td><td>33,9</td><td>9,3</td><td><lod< td=""><td>0,8</td><td>6,2</td><td>127,4</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<>	2,3	<lod< td=""><td>75,0</td><td>33,9</td><td>9,3</td><td><lod< td=""><td>0,8</td><td>6,2</td><td>127,4</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<>	75,0	33,9	9,3	<lod< td=""><td>0,8</td><td>6,2</td><td>127,4</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<>	0,8	6,2	127,4	0,1	1,5	0,1
	Juli 2019	257,5	0,3	50,3	<lod< td=""><td><lod< td=""><td>0,2</td><td>0,5</td><td>47,5</td><td>35,4</td><td>8,5</td><td>0,1</td><td>4,2</td><td>6,5</td><td>113,5</td><td>0,2</td><td>1,2</td><td>0,3</td></lod<></td></lod<>	<lod< td=""><td>0,2</td><td>0,5</td><td>47,5</td><td>35,4</td><td>8,5</td><td>0,1</td><td>4,2</td><td>6,5</td><td>113,5</td><td>0,2</td><td>1,2</td><td>0,3</td></lod<>	0,2	0,5	47,5	35,4	8,5	0,1	4,2	6,5	113,5	0,2	1,2	0,3
	Dez 2019	271,6	0,2	34,9	0,1	<lod< td=""><td>43,8</td><td>0,5</td><td>64,5</td><td>23,9</td><td>6,8</td><td>0,1</td><td>1,7</td><td>5,0</td><td>139,6</td><td>0,1</td><td>0,1</td><td><lod< td=""></lod<></td></lod<>	43,8	0,5	64,5	23,9	6,8	0,1	1,7	5,0	139,6	0,1	0,1	<lod< td=""></lod<>
	Juni 2020	221,0	0,2	41,1	<lod< td=""><td><lod< td=""><td></td><td>0,4</td><td>53,0</td><td>32,1</td><td>7,3</td><td>0,4</td><td>1,4</td><td>5,5</td><td>92,5</td><td>0,2</td><td>0,9</td><td>0,1</td></lod<></td></lod<>	<lod< td=""><td></td><td>0,4</td><td>53,0</td><td>32,1</td><td>7,3</td><td>0,4</td><td>1,4</td><td>5,5</td><td>92,5</td><td>0,2</td><td>0,9</td><td>0,1</td></lod<>		0,4	53,0	32,1	7,3	0,4	1,4	5,5	92,5	0,2	0,9	0,1
13	Mai 2018	244,7	0,6	65,4	0,2	0,4	0,4	0,3	60,4	36,5	8,8	0,1	2,1	7,9	104,8	0,3	1,5	0,4
	Mai 2019	270,6	0,2	51,1	0,1	<lod< td=""><td>2,3</td><td><lod< td=""><td>79,2</td><td>34,7</td><td>9,5</td><td><lod< td=""><td>0,8</td><td>6,9</td><td>128,2</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<>	2,3	<lod< td=""><td>79,2</td><td>34,7</td><td>9,5</td><td><lod< td=""><td>0,8</td><td>6,9</td><td>128,2</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<>	79,2	34,7	9,5	<lod< td=""><td>0,8</td><td>6,9</td><td>128,2</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<>	0,8	6,9	128,2	0,1	1,5	0,1
	Juli 2019	262,1	0,3	51,0	<lod< td=""><td><lod< td=""><td>0,6</td><td>0,4</td><td>50,4</td><td>36,1</td><td>8,7</td><td>0,1</td><td>4,1</td><td>6,6</td><td>112,3</td><td>0,2</td><td>1,3</td><td>0,2</td></lod<></td></lod<>	<lod< td=""><td>0,6</td><td>0,4</td><td>50,4</td><td>36,1</td><td>8,7</td><td>0,1</td><td>4,1</td><td>6,6</td><td>112,3</td><td>0,2</td><td>1,3</td><td>0,2</td></lod<>	0,6	0,4	50,4	36,1	8,7	0,1	4,1	6,6	112,3	0,2	1,3	0,2
	Dez 2019	281,9	0,2	38,7	0,1	<lod< td=""><td>41,3</td><td>0,5</td><td>71,1</td><td>26,8</td><td>7,3</td><td>0,1</td><td>1,8</td><td>5,5</td><td>143,9</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<>	41,3	0,5	71,1	26,8	7,3	0,1	1,8	5,5	143,9	0,1	1,1	<lod< td=""></lod<>
	Juni 2020	227,1	0,2	41,9	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>55,0</td><td>32,6</td><td>7,5</td><td>0,1</td><td>1,5</td><td>5,5</td><td>95,7</td><td>0,4</td><td>0,9</td><td>0,2</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>55,0</td><td>32,6</td><td>7,5</td><td>0,1</td><td>1,5</td><td>5,5</td><td>95,7</td><td>0,4</td><td>0,9</td><td>0,2</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>55,0</td><td>32,6</td><td>7,5</td><td>0,1</td><td>1,5</td><td>5,5</td><td>95,7</td><td>0,4</td><td>0,9</td><td>0,2</td></lod<></td></lod<>	<lod< td=""><td>55,0</td><td>32,6</td><td>7,5</td><td>0,1</td><td>1,5</td><td>5,5</td><td>95,7</td><td>0,4</td><td>0,9</td><td>0,2</td></lod<>	55,0	32,6	7,5	0,1	1,5	5,5	95,7	0,4	0,9	0,2
14	Mai 2018	216,7	0,2	54,5	<lod< td=""><td>0,1</td><td>1,6</td><td><lod< td=""><td>59,6</td><td>36,2</td><td>8,8</td><td><lod< td=""><td>1,6</td><td>8,2</td><td>100,5</td><td>0,2</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<>	0,1	1,6	<lod< td=""><td>59,6</td><td>36,2</td><td>8,8</td><td><lod< td=""><td>1,6</td><td>8,2</td><td>100,5</td><td>0,2</td><td>1,5</td><td>0,1</td></lod<></td></lod<>	59,6	36,2	8,8	<lod< td=""><td>1,6</td><td>8,2</td><td>100,5</td><td>0,2</td><td>1,5</td><td>0,1</td></lod<>	1,6	8,2	100,5	0,2	1,5	0,1
	Mai 2019	256,9	0,2	51,2	<lod< td=""><td><lod< td=""><td>2,9</td><td><lod< td=""><td>79,5</td><td>33,8</td><td>9,3</td><td><lod< td=""><td>0,6</td><td>6,6</td><td>123,6</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,9</td><td><lod< td=""><td>79,5</td><td>33,8</td><td>9,3</td><td><lod< td=""><td>0,6</td><td>6,6</td><td>123,6</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<>	2,9	<lod< td=""><td>79,5</td><td>33,8</td><td>9,3</td><td><lod< td=""><td>0,6</td><td>6,6</td><td>123,6</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<>	79,5	33,8	9,3	<lod< td=""><td>0,6</td><td>6,6</td><td>123,6</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<>	0,6	6,6	123,6	0,1	1,5	0,1
	Juli 2019	256,9	0,3	49,5	<lod< td=""><td><lod< td=""><td>0,7</td><td>0,6</td><td>50,8</td><td>34,9</td><td>8,5</td><td>0,1</td><td>3,9</td><td>6,6</td><td>110,4</td><td>0,1</td><td>1,3</td><td>0,1</td></lod<></td></lod<>	<lod< td=""><td>0,7</td><td>0,6</td><td>50,8</td><td>34,9</td><td>8,5</td><td>0,1</td><td>3,9</td><td>6,6</td><td>110,4</td><td>0,1</td><td>1,3</td><td>0,1</td></lod<>	0,7	0,6	50,8	34,9	8,5	0,1	3,9	6,6	110,4	0,1	1,3	0,1
	Dez 2019	283,8	0,2	38,9	0,1	<lod< td=""><td>37,6</td><td>0,5</td><td>75,4</td><td>28,6</td><td>7,2</td><td>0,6</td><td>1,5</td><td>5,2</td><td>140,5</td><td>0,2</td><td>1,0</td><td>0,1</td></lod<>	37,6	0,5	75,4	28,6	7,2	0,6	1,5	5,2	140,5	0,2	1,0	0,1
	Juni 2020	227,5	0,3	42,3	<lod< td=""><td><lod< td=""><td>0,3</td><td>0,5</td><td>55,6</td><td>31,6</td><td>7,3</td><td>0,1</td><td>1,5</td><td>5,5</td><td>93,7</td><td>0,3</td><td>0,9</td><td>0,2</td></lod<></td></lod<>	<lod< td=""><td>0,3</td><td>0,5</td><td>55,6</td><td>31,6</td><td>7,3</td><td>0,1</td><td>1,5</td><td>5,5</td><td>93,7</td><td>0,3</td><td>0,9</td><td>0,2</td></lod<>	0,3	0,5	55,6	31,6	7,3	0,1	1,5	5,5	93,7	0,3	0,9	0,2
14a	Mai 2018	274,1	0,3	108,5	<lod< td=""><td>0,2</td><td>7,1</td><td>0,2</td><td>102,5</td><td>74,4</td><td>10,1</td><td>0,1</td><td>1,9</td><td>6,0</td><td>134,1</td><td>0,2</td><td>1,1</td><td>0,1</td></lod<>	0,2	7,1	0,2	102,5	74,4	10,1	0,1	1,9	6,0	134,1	0,2	1,1	0,1
	Mai 2019	255,4	0,1	57,2	0,1	<lod< td=""><td>15,3</td><td><lod< td=""><td>106,1</td><td>43,6</td><td>11,6</td><td><lod< td=""><td>1,6</td><td>6,9</td><td>130,8</td><td>0,2</td><td>1,7</td><td>0,1</td></lod<></td></lod<></td></lod<>	15,3	<lod< td=""><td>106,1</td><td>43,6</td><td>11,6</td><td><lod< td=""><td>1,6</td><td>6,9</td><td>130,8</td><td>0,2</td><td>1,7</td><td>0,1</td></lod<></td></lod<>	106,1	43,6	11,6	<lod< td=""><td>1,6</td><td>6,9</td><td>130,8</td><td>0,2</td><td>1,7</td><td>0,1</td></lod<>	1,6	6,9	130,8	0,2	1,7	0,1
	Juli 2019	118,4	0,1	17,9	0,1	<lod< td=""><td>6,4</td><td>0,2</td><td>56,7</td><td>18,9</td><td>5,7</td><td><lod< td=""><td>2,0</td><td>4,6</td><td>68,8</td><td>0,1</td><td>0,6</td><td>0,1</td></lod<></td></lod<>	6,4	0,2	56,7	18,9	5,7	<lod< td=""><td>2,0</td><td>4,6</td><td>68,8</td><td>0,1</td><td>0,6</td><td>0,1</td></lod<>	2,0	4,6	68,8	0,1	0,6	0,1
	Dez 2019	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	Juni 2020	190,1	0,3	29,0	0,2	<lod< td=""><td>11,3</td><td><lod< td=""><td>83,5</td><td>24,3</td><td>7,6</td><td>0,1</td><td>1,2</td><td>6,4</td><td>93,9</td><td>0,3</td><td>0,6</td><td>0,1</td></lod<></td></lod<>	11,3	<lod< td=""><td>83,5</td><td>24,3</td><td>7,6</td><td>0,1</td><td>1,2</td><td>6,4</td><td>93,9</td><td>0,3</td><td>0,6</td><td>0,1</td></lod<>	83,5	24,3	7,6	0,1	1,2	6,4	93,9	0,3	0,6	0,1

PNStelle	Datum	НСО₃	F.	CI-	NO ₂ -	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ² -	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K ⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
14b	Mai 2018	279,5	0,1	59,7	<lod< td=""><td>0,6</td><td>11,8</td><td>0,4</td><td>108,7</td><td>42,3</td><td>11,5</td><td><lod< td=""><td>1,8</td><td>7,4</td><td>133,3</td><td>0,3</td><td>1,8</td><td>0,2</td></lod<></td></lod<>	0,6	11,8	0,4	108,7	42,3	11,5	<lod< td=""><td>1,8</td><td>7,4</td><td>133,3</td><td>0,3</td><td>1,8</td><td>0,2</td></lod<>	1,8	7,4	133,3	0,3	1,8	0,2
	Mai 2019	291,7	0,2	6< LOD	<lod< td=""><td><lod< td=""><td>11,0</td><td><lod< td=""><td>104,6</td><td>47,7</td><td>11,4</td><td><lod< td=""><td>1,6</td><td>7,1</td><td>139,7</td><td>0,2</td><td>2,0</td><td>0,2</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11,0</td><td><lod< td=""><td>104,6</td><td>47,7</td><td>11,4</td><td><lod< td=""><td>1,6</td><td>7,1</td><td>139,7</td><td>0,2</td><td>2,0</td><td>0,2</td></lod<></td></lod<></td></lod<>	11,0	<lod< td=""><td>104,6</td><td>47,7</td><td>11,4</td><td><lod< td=""><td>1,6</td><td>7,1</td><td>139,7</td><td>0,2</td><td>2,0</td><td>0,2</td></lod<></td></lod<>	104,6	47,7	11,4	<lod< td=""><td>1,6</td><td>7,1</td><td>139,7</td><td>0,2</td><td>2,0</td><td>0,2</td></lod<>	1,6	7,1	139,7	0,2	2,0	0,2
	Juli 2019	85,7	0,1	13,6	0,2	<lod< td=""><td>5,4</td><td>0,2</td><td>29,5</td><td>14,4</td><td>3,2</td><td>0,4</td><td>1,5</td><td>2,9</td><td>44,3</td><td>0,3</td><td>0,5</td><td><lod< td=""></lod<></td></lod<>	5,4	0,2	29,5	14,4	3,2	0,4	1,5	2,9	44,3	0,3	0,5	<lod< td=""></lod<>
	Dez 2019	290,5	0,2	42,0	<lod< td=""><td><lod< td=""><td>26,2</td><td>0,5</td><td>95,8</td><td>31,5</td><td>7,6</td><td>0,1</td><td>1,5</td><td>5,8</td><td>143,3</td><td>0,2</td><td>1,2</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>26,2</td><td>0,5</td><td>95,8</td><td>31,5</td><td>7,6</td><td>0,1</td><td>1,5</td><td>5,8</td><td>143,3</td><td>0,2</td><td>1,2</td><td><lod< td=""></lod<></td></lod<>	26,2	0,5	95,8	31,5	7,6	0,1	1,5	5,8	143,3	0,2	1,2	<lod< td=""></lod<>
	Juni 2020	192,2	0,2	27,3	0,1	<lod< td=""><td>8,5</td><td>0,8</td><td>76,9</td><td>23,1</td><td>7,0</td><td>0,1</td><td>1,1</td><td>5,7</td><td>93,2</td><td>0,3</td><td>0,7</td><td>0,1</td></lod<>	8,5	0,8	76,9	23,1	7,0	0,1	1,1	5,7	93,2	0,3	0,7	0,1
14c	Mai 2018	311,5	1,0	53,1	0,1	<lod< td=""><td>10,7</td><td><lod< td=""><td>132,6</td><td>38,4</td><td>10,1</td><td><lod< td=""><td>0,5</td><td>6,4</td><td>91,0</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	10,7	<lod< td=""><td>132,6</td><td>38,4</td><td>10,1</td><td><lod< td=""><td>0,5</td><td>6,4</td><td>91,0</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	132,6	38,4	10,1	<lod< td=""><td>0,5</td><td>6,4</td><td>91,0</td><td>0,1</td><td>1,1</td><td><lod< td=""></lod<></td></lod<>	0,5	6,4	91,0	0,1	1,1	<lod< td=""></lod<>
	Mai 2019	220,3	0,3	111,6	<lod< td=""><td><lod< td=""><td>2,0</td><td><lod< td=""><td>97,2</td><td>75,4</td><td>9,0</td><td><lod< td=""><td>0,6</td><td>5,1</td><td>115,0</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td><lod< td=""><td>97,2</td><td>75,4</td><td>9,0</td><td><lod< td=""><td>0,6</td><td>5,1</td><td>115,0</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	2,0	<lod< td=""><td>97,2</td><td>75,4</td><td>9,0</td><td><lod< td=""><td>0,6</td><td>5,1</td><td>115,0</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<></td></lod<>	97,2	75,4	9,0	<lod< td=""><td>0,6</td><td>5,1</td><td>115,0</td><td>0,1</td><td>1,0</td><td><lod< td=""></lod<></td></lod<>	0,6	5,1	115,0	0,1	1,0	<lod< td=""></lod<>
	Juli 2019	79,3	0,1	13,1	0,1	<lod< td=""><td>2,9</td><td><lod< td=""><td>49,4</td><td>15,7</td><td>4,1</td><td>0,2</td><td>1,6</td><td>3,1</td><td>51,7</td><td>0,2</td><td>0,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2,9	<lod< td=""><td>49,4</td><td>15,7</td><td>4,1</td><td>0,2</td><td>1,6</td><td>3,1</td><td>51,7</td><td>0,2</td><td>0,4</td><td><lod< td=""></lod<></td></lod<>	49,4	15,7	4,1	0,2	1,6	3,1	51,7	0,2	0,4	<lod< td=""></lod<>
	Dez 2019	207,8	0,3	46,7	<lod< td=""><td><lod< td=""><td>12,3</td><td>0,3</td><td>96,3</td><td>41,1</td><td>6,9</td><td>0,1</td><td>1,2</td><td>4,4</td><td>109,6</td><td>0,1</td><td>0,7</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>12,3</td><td>0,3</td><td>96,3</td><td>41,1</td><td>6,9</td><td>0,1</td><td>1,2</td><td>4,4</td><td>109,6</td><td>0,1</td><td>0,7</td><td><lod< td=""></lod<></td></lod<>	12,3	0,3	96,3	41,1	6,9	0,1	1,2	4,4	109,6	0,1	0,7	<lod< td=""></lod<>
	Juni 2020	140,9	0,2	19,2	<lod< td=""><td><lod< td=""><td>1,7</td><td><lod< td=""><td>56,9</td><td>17,9</td><td>4,7</td><td><lod< td=""><td>0,7</td><td>2,8</td><td>68,5</td><td>0,1</td><td>0,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,7</td><td><lod< td=""><td>56,9</td><td>17,9</td><td>4,7</td><td><lod< td=""><td>0,7</td><td>2,8</td><td>68,5</td><td>0,1</td><td>0,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	1,7	<lod< td=""><td>56,9</td><td>17,9</td><td>4,7</td><td><lod< td=""><td>0,7</td><td>2,8</td><td>68,5</td><td>0,1</td><td>0,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	56,9	17,9	4,7	<lod< td=""><td>0,7</td><td>2,8</td><td>68,5</td><td>0,1</td><td>0,4</td><td><lod< td=""></lod<></td></lod<>	0,7	2,8	68,5	0,1	0,4	<lod< td=""></lod<>
14d	Mai 2018	399,9	0,1	97,1	0,1	<lod< td=""><td>3,7</td><td><lod< td=""><td>96,6</td><td>60,3</td><td>1< LOD</td><td><lod< td=""><td>0,7</td><td>5,7</td><td>98,3</td><td>0,1</td><td>2,3</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	3,7	<lod< td=""><td>96,6</td><td>60,3</td><td>1< LOD</td><td><lod< td=""><td>0,7</td><td>5,7</td><td>98,3</td><td>0,1</td><td>2,3</td><td><lod< td=""></lod<></td></lod<></td></lod<>	96,6	60,3	1< LOD	<lod< td=""><td>0,7</td><td>5,7</td><td>98,3</td><td>0,1</td><td>2,3</td><td><lod< td=""></lod<></td></lod<>	0,7	5,7	98,3	0,1	2,3	<lod< td=""></lod<>
	Mai 2019	297,5	0,2	71,7	<lod< td=""><td><lod< td=""><td>11,0</td><td>0,3</td><td>85,8</td><td>52,2</td><td>10,2</td><td><lod< td=""><td>1,6</td><td>6,5</td><td>134,4</td><td>0,1</td><td>2,1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11,0</td><td>0,3</td><td>85,8</td><td>52,2</td><td>10,2</td><td><lod< td=""><td>1,6</td><td>6,5</td><td>134,4</td><td>0,1</td><td>2,1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	11,0	0,3	85,8	52,2	10,2	<lod< td=""><td>1,6</td><td>6,5</td><td>134,4</td><td>0,1</td><td>2,1</td><td><lod< td=""></lod<></td></lod<>	1,6	6,5	134,4	0,1	2,1	<lod< td=""></lod<>
	Juli 2019	257,5	0,3	80,3	0,2	<lod< td=""><td>3,1</td><td>0,2</td><td>95,8</td><td>76,4</td><td>10,6</td><td>0,1</td><td>2,6</td><td>6,0</td><td>114,5</td><td>0,2</td><td>2,5</td><td>0,1</td></lod<>	3,1	0,2	95,8	76,4	10,6	0,1	2,6	6,0	114,5	0,2	2,5	0,1
	Dez 2019	329,5	0,3	46,1	<lod< td=""><td><lod< td=""><td>17,7</td><td>1,2</td><td>67,7</td><td>34,8</td><td>6,2</td><td><lod< td=""><td>1,4</td><td>4,5</td><td>148,8</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>17,7</td><td>1,2</td><td>67,7</td><td>34,8</td><td>6,2</td><td><lod< td=""><td>1,4</td><td>4,5</td><td>148,8</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	17,7	1,2	67,7	34,8	6,2	<lod< td=""><td>1,4</td><td>4,5</td><td>148,8</td><td>0,1</td><td>1,4</td><td><lod< td=""></lod<></td></lod<>	1,4	4,5	148,8	0,1	1,4	<lod< td=""></lod<>
	Juni 2020	311,1	0,3	60,4	<lod< td=""><td><lod< td=""><td>4,5</td><td>0,3</td><td>74,7</td><td>52,5</td><td>9,7</td><td>0,2</td><td>1,2</td><td>4,9</td><td>120,1</td><td>0,6</td><td>2,9</td><td>0,1</td></lod<></td></lod<>	<lod< td=""><td>4,5</td><td>0,3</td><td>74,7</td><td>52,5</td><td>9,7</td><td>0,2</td><td>1,2</td><td>4,9</td><td>120,1</td><td>0,6</td><td>2,9</td><td>0,1</td></lod<>	4,5	0,3	74,7	52,5	9,7	0,2	1,2	4,9	120,1	0,6	2,9	0,1
15	Mai 2018	256,7	1,1	101,4	0,1	<lod< td=""><td>15,0</td><td><lod< td=""><td>107,9</td><td>27,2</td><td>7,4</td><td><lod< td=""><td><lod< td=""><td>4,7</td><td>74,1</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	15,0	<lod< td=""><td>107,9</td><td>27,2</td><td>7,4</td><td><lod< td=""><td><lod< td=""><td>4,7</td><td>74,1</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	107,9	27,2	7,4	<lod< td=""><td><lod< td=""><td>4,7</td><td>74,1</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,7</td><td>74,1</td><td><lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	4,7	74,1	<lod< td=""><td>0,9</td><td><lod< td=""></lod<></td></lod<>	0,9	<lod< td=""></lod<>
	Mai 2019	267,3	0,2	50,3	0,1	<lod< td=""><td>5,0</td><td><lod< td=""><td>81,1</td><td>35,1</td><td>9,6</td><td><lod< td=""><td>0,6</td><td>6,4</td><td>124,6</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<>	5,0	<lod< td=""><td>81,1</td><td>35,1</td><td>9,6</td><td><lod< td=""><td>0,6</td><td>6,4</td><td>124,6</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<></td></lod<>	81,1	35,1	9,6	<lod< td=""><td>0,6</td><td>6,4</td><td>124,6</td><td>0,1</td><td>1,5</td><td>0,1</td></lod<>	0,6	6,4	124,6	0,1	1,5	0,1
	Juli 2019	230,7	0,3	44,6	<lod< td=""><td><lod< td=""><td>1,5</td><td>0,3</td><td>51,5</td><td>33,1</td><td>8,2</td><td>0,1</td><td>3,6</td><td>6,4</td><td>106,1</td><td>0,1</td><td>1,2</td><td>0,1</td></lod<></td></lod<>	<lod< td=""><td>1,5</td><td>0,3</td><td>51,5</td><td>33,1</td><td>8,2</td><td>0,1</td><td>3,6</td><td>6,4</td><td>106,1</td><td>0,1</td><td>1,2</td><td>0,1</td></lod<>	1,5	0,3	51,5	33,1	8,2	0,1	3,6	6,4	106,1	0,1	1,2	0,1
	Dez 2019	275,5	0,2	38,5	0,1	< LOD	36,3	0,6	81,3	26,2	7,0	0,1	1,5	5,2	138,9	0,1	1,0	<lod< td=""></lod<>
	Juni 2020	222,9	0,2	40,9	<lod< td=""><td><lod< td=""><td>0,9</td><td>0,6</td><td>57,1</td><td>31,6</td><td>7,2</td><td>0,1</td><td>1,5</td><td>5,6</td><td>93,9</td><td>0,3</td><td>0,9</td><td>0,2</td></lod<></td></lod<>	<lod< td=""><td>0,9</td><td>0,6</td><td>57,1</td><td>31,6</td><td>7,2</td><td>0,1</td><td>1,5</td><td>5,6</td><td>93,9</td><td>0,3</td><td>0,9</td><td>0,2</td></lod<>	0,9	0,6	57,1	31,6	7,2	0,1	1,5	5,6	93,9	0,3	0,9	0,2
16	Mai 2018	237,2	<lod< td=""><td>49,8</td><td>0,1</td><td><lod< td=""><td>12,4</td><td><lod< td=""><td>67,4</td><td>28,0</td><td>7,6</td><td><lod< td=""><td>0,1</td><td>4,8</td><td>68,2</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	49,8	0,1	<lod< td=""><td>12,4</td><td><lod< td=""><td>67,4</td><td>28,0</td><td>7,6</td><td><lod< td=""><td>0,1</td><td>4,8</td><td>68,2</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	12,4	<lod< td=""><td>67,4</td><td>28,0</td><td>7,6</td><td><lod< td=""><td>0,1</td><td>4,8</td><td>68,2</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	67,4	28,0	7,6	<lod< td=""><td>0,1</td><td>4,8</td><td>68,2</td><td>0,1</td><td>0,8</td><td><lod< td=""></lod<></td></lod<>	0,1	4,8	68,2	0,1	0,8	<lod< td=""></lod<>
	Mai 2019	266,4	0,2	50,4	0,1	<lod< td=""><td>5,5</td><td><lod< td=""><td>82,4</td><td>34,2</td><td>9,7</td><td><lod< td=""><td>0,5</td><td>6,4</td><td>125,7</td><td>0,2</td><td>1,5</td><td>0,1</td></lod<></td></lod<></td></lod<>	5,5	<lod< td=""><td>82,4</td><td>34,2</td><td>9,7</td><td><lod< td=""><td>0,5</td><td>6,4</td><td>125,7</td><td>0,2</td><td>1,5</td><td>0,1</td></lod<></td></lod<>	82,4	34,2	9,7	<lod< td=""><td>0,5</td><td>6,4</td><td>125,7</td><td>0,2</td><td>1,5</td><td>0,1</td></lod<>	0,5	6,4	125,7	0,2	1,5	0,1
	Juli 2019	114,4	0,1	18,0	0,4	<lod< td=""><td>6,2</td><td>0,5</td><td>42,5</td><td>17,4</td><td>4,7</td><td>0,1</td><td>1,6</td><td>4,4</td><td>60,3</td><td>0,2</td><td>0,5</td><td>0,1</td></lod<>	6,2	0,5	42,5	17,4	4,7	0,1	1,6	4,4	60,3	0,2	0,5	0,1
	Dez 2019	274,6	0,2	36,9	0,1	< LOD	42,0	0,6	72,9	24,3	6,8	0,1	1,5	5,1	138,0	0,1	0,9	<lod< td=""></lod<>
	Juni 2020	221,7	0,2	40,9	<lod< td=""><td><lod< td=""><td>1,7</td><td>0,5</td><td>57,9</td><td>30,3</td><td>7,2</td><td><lod< td=""><td>1,4</td><td>5,4</td><td>91,7</td><td>0,2</td><td>0,8</td><td>0,2</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,7</td><td>0,5</td><td>57,9</td><td>30,3</td><td>7,2</td><td><lod< td=""><td>1,4</td><td>5,4</td><td>91,7</td><td>0,2</td><td>0,8</td><td>0,2</td></lod<></td></lod<>	1,7	0,5	57,9	30,3	7,2	<lod< td=""><td>1,4</td><td>5,4</td><td>91,7</td><td>0,2</td><td>0,8</td><td>0,2</td></lod<>	1,4	5,4	91,7	0,2	0,8	0,2

PNStelle	Datum	HCO ₃	F ⁻	Cl-	NO ₂ -	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ²⁻	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K ⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
16a	Mai 2018	259,4	0,1	45,5	<lod< td=""><td>0,1</td><td>12,3</td><td><lod< td=""><td>59,0</td><td>62,5</td><td>10,5</td><td><lod< td=""><td>0,9</td><td>6,0</td><td>96,9</td><td>0,1</td><td>2,4</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,1	12,3	<lod< td=""><td>59,0</td><td>62,5</td><td>10,5</td><td><lod< td=""><td>0,9</td><td>6,0</td><td>96,9</td><td>0,1</td><td>2,4</td><td><lod< td=""></lod<></td></lod<></td></lod<>	59,0	62,5	10,5	<lod< td=""><td>0,9</td><td>6,0</td><td>96,9</td><td>0,1</td><td>2,4</td><td><lod< td=""></lod<></td></lod<>	0,9	6,0	96,9	0,1	2,4	<lod< td=""></lod<>
	Mai 2019	270,6	0,2	141,7	< LOD	0,6	6,3	<lod< td=""><td>83,5</td><td>100,3</td><td>10,7</td><td><lod< td=""><td>1,7</td><td>25,5</td><td>111,6</td><td>0,4</td><td>0,9</td><td>0,6</td></lod<></td></lod<>	83,5	100,3	10,7	<lod< td=""><td>1,7</td><td>25,5</td><td>111,6</td><td>0,4</td><td>0,9</td><td>0,6</td></lod<>	1,7	25,5	111,6	0,4	0,9	0,6
	Juli 2019	285,0	0,2	174,2	0,4	<lod< td=""><td>6,1</td><td><lod< td=""><td>93,3</td><td>133,6</td><td>12,3</td><td>0,1</td><td>3,3</td><td>32,9</td><td>124,7</td><td>0,5</td><td>0,9</td><td>1,3</td></lod<></td></lod<>	6,1	<lod< td=""><td>93,3</td><td>133,6</td><td>12,3</td><td>0,1</td><td>3,3</td><td>32,9</td><td>124,7</td><td>0,5</td><td>0,9</td><td>1,3</td></lod<>	93,3	133,6	12,3	0,1	3,3	32,9	124,7	0,5	0,9	1,3
	Dez 2019	260,9	0,1	113,8	<lod< td=""><td><lod< td=""><td>13,4</td><td>0,3</td><td>76,2</td><td>76,3</td><td>8,1</td><td><lod< td=""><td>1,5</td><td>17,8</td><td>108,6</td><td>0,8</td><td>0,7</td><td>0,7</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13,4</td><td>0,3</td><td>76,2</td><td>76,3</td><td>8,1</td><td><lod< td=""><td>1,5</td><td>17,8</td><td>108,6</td><td>0,8</td><td>0,7</td><td>0,7</td></lod<></td></lod<>	13,4	0,3	76,2	76,3	8,1	<lod< td=""><td>1,5</td><td>17,8</td><td>108,6</td><td>0,8</td><td>0,7</td><td>0,7</td></lod<>	1,5	17,8	108,6	0,8	0,7	0,7
	Juni 2020	231,6	0,2	115,8	0,3	0,2	5,4	1,0	73,1	80,9	8,0	<lod< td=""><td>1,1</td><td>20,3</td><td>89,3</td><td>0,4</td><td>0,5</td><td>0,4</td></lod<>	1,1	20,3	89,3	0,4	0,5	0,4
16b	Mai 2018	320,1	0,2	143,8	0,3	0,3	1,2	0,8	115,4	115,0	12,0	0,1	1,6	32,0	118,6	0,1	0,9	1,3
	Mai 2019	249,6	0,2	142,2	0,1	0,5	2,4	<lod< td=""><td>92,8</td><td>102,2</td><td>10,3</td><td>0,1</td><td>1,7</td><td>27,6</td><td>103,7</td><td>0,2</td><td>0,8</td><td>1,3</td></lod<>	92,8	102,2	10,3	0,1	1,7	27,6	103,7	0,2	0,8	1,3
	Juli 2019	271,6	0,2	177,5	0,2	<lod< td=""><td>4,8</td><td><lod< td=""><td>99,3</td><td>132,8</td><td>12,1</td><td>0,1</td><td>2,8</td><td>31,4</td><td>118,2</td><td>0,1</td><td>0,9</td><td>1,3</td></lod<></td></lod<>	4,8	<lod< td=""><td>99,3</td><td>132,8</td><td>12,1</td><td>0,1</td><td>2,8</td><td>31,4</td><td>118,2</td><td>0,1</td><td>0,9</td><td>1,3</td></lod<>	99,3	132,8	12,1	0,1	2,8	31,4	118,2	0,1	0,9	1,3
	Dez 2019	227,0	0,2	119,2	0,4	<lod< td=""><td>7,8</td><td>0,7</td><td>94,5</td><td>82,4</td><td>7,7</td><td><lod< td=""><td>1,4</td><td>20,8</td><td>97,5</td><td>0,1</td><td>0,6</td><td>0,7</td></lod<></td></lod<>	7,8	0,7	94,5	82,4	7,7	<lod< td=""><td>1,4</td><td>20,8</td><td>97,5</td><td>0,1</td><td>0,6</td><td>0,7</td></lod<>	1,4	20,8	97,5	0,1	0,6	0,7
	Juni 2020	246,9	0,2	125,7	0,2	0,2	2,5	1,4	94,7	88,4	8,1	0,1	1,2	24,0	88,6	0,2	0,4	0,5
17	Mai 2018	290,4	0,2	96,5	0,1	0,1	5,6	<lod< td=""><td>81,8</td><td>64,7</td><td>10,2</td><td><lod< td=""><td>1,6</td><td>14,6</td><td>109,7</td><td>0,4</td><td>1,2</td><td>0,3</td></lod<></td></lod<>	81,8	64,7	10,2	<lod< td=""><td>1,6</td><td>14,6</td><td>109,7</td><td>0,4</td><td>1,2</td><td>0,3</td></lod<>	1,6	14,6	109,7	0,4	1,2	0,3
	Mai 2019	264,2	0,2	75,8	0,1	0,2	6,1	<lod< td=""><td>82,9</td><td>51,6</td><td>9,9</td><td><lod< td=""><td>0,8</td><td>10,8</td><td>121,7</td><td>0,2</td><td>1,3</td><td>0,2</td></lod<></td></lod<>	82,9	51,6	9,9	<lod< td=""><td>0,8</td><td>10,8</td><td>121,7</td><td>0,2</td><td>1,3</td><td>0,2</td></lod<>	0,8	10,8	121,7	0,2	1,3	0,2
	Juli 2019	156,2	0,1	49,7	0,1	<lod< td=""><td>4,6</td><td>0,3</td><td>43,9</td><td>38,6</td><td>5,9</td><td><lod< td=""><td>2,0</td><td>8,9</td><td>70,2</td><td>0,2</td><td>0,6</td><td>0,1</td></lod<></td></lod<>	4,6	0,3	43,9	38,6	5,9	<lod< td=""><td>2,0</td><td>8,9</td><td>70,2</td><td>0,2</td><td>0,6</td><td>0,1</td></lod<>	2,0	8,9	70,2	0,2	0,6	0,1
	Dez 2019	274,3	0,2	42,2	0,1	<lod< td=""><td>40,4</td><td>0,6</td><td>71,7</td><td>27,5</td><td>6,8</td><td>0,1</td><td>1,5</td><td>5,8</td><td>134,0</td><td>0,2</td><td>0,9</td><td>0,1</td></lod<>	40,4	0,6	71,7	27,5	6,8	0,1	1,5	5,8	134,0	0,2	0,9	0,1
	Juni 2020	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
18	Mai 2018	260,6	0,1	86,8	0,4	0,5	8,4	<lod< td=""><td>76,1</td><td>41,2</td><td>7,4</td><td><lod< td=""><td>0,2</td><td>9,3</td><td>64,3</td><td>0,1</td><td>0,7</td><td>0,2</td></lod<></td></lod<>	76,1	41,2	7,4	<lod< td=""><td>0,2</td><td>9,3</td><td>64,3</td><td>0,1</td><td>0,7</td><td>0,2</td></lod<>	0,2	9,3	64,3	0,1	0,7	0,2
	Mai 2019	264,2	0,2	76,7	0,1	0,2	5,6	<lod< td=""><td>82,2</td><td>52,7</td><td>9,9</td><td><lod< td=""><td>0,8</td><td>11,2</td><td>121,7</td><td>0,2</td><td>1,3</td><td>0,2</td></lod<></td></lod<>	82,2	52,7	9,9	<lod< td=""><td>0,8</td><td>11,2</td><td>121,7</td><td>0,2</td><td>1,3</td><td>0,2</td></lod<>	0,8	11,2	121,7	0,2	1,3	0,2
	Juli 2019	154,7	0,1	67,6	0,2	<lod< td=""><td>7,0</td><td>0,6</td><td>51,4</td><td>51,5</td><td>6,1</td><td>0,1</td><td>1,9</td><td>12,7</td><td>71,2</td><td>0,2</td><td>0,6</td><td>0,2</td></lod<>	7,0	0,6	51,4	51,5	6,1	0,1	1,9	12,7	71,2	0,2	0,6	0,2
	Dez 2019	275,2	0,2	42,3	0,1	<lod< td=""><td>41,3</td><td>0,6</td><td>70,9</td><td>28,0</td><td>6,8</td><td>0,1</td><td>1,4</td><td>6,0</td><td>135,2</td><td>0,2</td><td>0,9</td><td>0,1</td></lod<>	41,3	0,6	70,9	28,0	6,8	0,1	1,4	6,0	135,2	0,2	0,9	0,1
	Juni 2020	223,6	0,2	50,1	<lod< td=""><td><lod< td=""><td>2,0</td><td>0,6</td><td>59,2</td><td>36,4</td><td>7,3</td><td><lod< td=""><td>1,4</td><td>7,0</td><td>91,3</td><td>0,3</td><td>0,8</td><td>0,2</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td>0,6</td><td>59,2</td><td>36,4</td><td>7,3</td><td><lod< td=""><td>1,4</td><td>7,0</td><td>91,3</td><td>0,3</td><td>0,8</td><td>0,2</td></lod<></td></lod<>	2,0	0,6	59,2	36,4	7,3	<lod< td=""><td>1,4</td><td>7,0</td><td>91,3</td><td>0,3</td><td>0,8</td><td>0,2</td></lod<>	1,4	7,0	91,3	0,3	0,8	0,2
19	Mai 2018	209,1	0,2	96,5	<lod< td=""><td>0,1</td><td>7,0</td><td>0,2</td><td>83,0</td><td>67,2</td><td>10,4</td><td>0,1</td><td>1,7</td><td>16,3</td><td>113,3</td><td>0,8</td><td>1,1</td><td>0,7</td></lod<>	0,1	7,0	0,2	83,0	67,2	10,4	0,1	1,7	16,3	113,3	0,8	1,1	0,7
	Mai 2019	256,6	0,2	76,5	< LOD	<lod< td=""><td>6,1</td><td><lod< td=""><td>80,7</td><td>52,9</td><td>9,8</td><td><lod< td=""><td>1,0</td><td>11,7</td><td>117,8</td><td>0,3</td><td>1,2</td><td>0,3</td></lod<></td></lod<></td></lod<>	6,1	<lod< td=""><td>80,7</td><td>52,9</td><td>9,8</td><td><lod< td=""><td>1,0</td><td>11,7</td><td>117,8</td><td>0,3</td><td>1,2</td><td>0,3</td></lod<></td></lod<>	80,7	52,9	9,8	<lod< td=""><td>1,0</td><td>11,7</td><td>117,8</td><td>0,3</td><td>1,2</td><td>0,3</td></lod<>	1,0	11,7	117,8	0,3	1,2	0,3
	Juli 2019	113,5	0,1	42,2	1,0	<lod< td=""><td>4,3</td><td>0,6</td><td>32,7</td><td>33,2</td><td>4,4</td><td>0,1</td><td>1,4</td><td>9,2</td><td>50,5</td><td>0,3</td><td>0,4</td><td>0,4</td></lod<>	4,3	0,6	32,7	33,2	4,4	0,1	1,4	9,2	50,5	0,3	0,4	0,4
	Dez 2019	274,9	0,2	39,9	0,2	<lod< td=""><td>72,8</td><td>0,4</td><td>69,6</td><td>27,3</td><td>7,0</td><td>0,1</td><td>1,5</td><td>5,8</td><td>140,3</td><td>0,4</td><td>0,9</td><td>0,1</td></lod<>	72,8	0,4	69,6	27,3	7,0	0,1	1,5	5,8	140,3	0,4	0,9	0,1
	Juni 2020	213,7	0,2	57,2	0,1	<lod< td=""><td>3,5</td><td>0,5</td><td>63,1</td><td>42,3</td><td>7,2</td><td><lod< td=""><td>1,3</td><td>9,0</td><td>89,2</td><td>0,3</td><td>0,7</td><td>0,3</td></lod<></td></lod<>	3,5	0,5	63,1	42,3	7,2	<lod< td=""><td>1,3</td><td>9,0</td><td>89,2</td><td>0,3</td><td>0,7</td><td>0,3</td></lod<>	1,3	9,0	89,2	0,3	0,7	0,3
					<u> </u>										1			

^{* =} keine Probenahme erfolgt

Anhang 10: Konzentration der detektierten Target-Substanzen der Stichtagsprobenahmen

PNstelle	Datum	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
01	Mai 2018	< LOD	< LOD	200,8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	35,7	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	27,8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	13,6	22,5	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	53,4	16,9	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOD
	Dez 2019	< LOD	30,8	< LOD	< LOD	< LOD	8,5	< LOD	< LOD	< LOD	73,4	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ
	Jun 2020	< LOD	92,4	< LOD	< LOD	< LOD	8,1	< LOQ	< LOD	< LOD	111,9	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
02	Mai 2018	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	*																
	Dez 2019	< LOD	81,4	< LOD	< LOD	< LOD	10,4	< LOD	< LOD	< LOD	80,1	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jun 2020	*																
03	Mai 2018	< LOD	< LOD	36,2	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	118,9	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	39,3	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	29,0	< LOD	< LOD	< LOD	< LOD	< LOD	35,7	< LOD
	Jul 2019	< LOD	8,2	54,5	< LOD	< LOQ	< LOD	42,6	9,5	< LOD	331,9	15,6	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOD
	Dez 2019	89,8	42,3	< LOD	< LOD	< LOD	10,1	< LOD	< LOD	< LOD	253,7	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jun 2020	< LOD	< LOD	< LOQ	< LOD	< LOD	10,6	37,0	< LOD	< LOD	> 1000	< LOD	< LOD	9,5	44,0	< LOD	117,0	39,9
04	Mai 2018	< LOD	< LOD	51,8	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOD	17,0	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	49,1	< LOD	< LOD	< LOD	< LOD	15,3	< LOD	98,8	< LOD	< LOD	< LOD	< LOD	< LOD	41,6	< LOD
	Jul 2019	< LOD	< LOD	65,7	< LOD	< LOD	< LOD	12,3	18,1	< LOD	375,1	7,7	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOD
	Dez 2019	< LOD	7,0	39,2	< LOQ	233,9	9,3	< LOD	< LOD	< LOD	298,2	< LOD	< LOD	< LOD	< LOD	587,1	< LOD	< LOD

PNstelle	Date Dun 2020	^ GAtrazin- GDesethyl[ng/L]	Atrazine[ng/L]	ထင် တ်Caffeine[ng/l]	Carbamazepine C[ng/L]	Chlorotoluron [ng/L]	Metoprolol f.rg/L]	Phenazone C[ng/L]	Propyphenazon ©e[ng/L]	Sulfamethoxaz	V Terbutylazine O[ng/L]	Bentazon G[ng/L]	Bezafibrat [ng/L]	⊗Bromoxynil [ng/L]	က် Dichlorprop-P [ng/L]	^ G Diclofenac G[ng/L]	[ng/L]	Mecoprop-P G[ng/L]
05		< LOD	< LOD	ľ		·	,	< LOD	Ť	< LOD	> 1000	< LOD		< LOD	< LOD		_	< LOD
05	Mai 2018			27,1	< LOD	54,1	< LOQ		4,9				< LOD		< LOD	< LOD	17,7	
	Mai 2019 Jul 2019	< LOD	< LOD	107,9	< LOD	< LOD	< LOD	< LOD	17,1 11,9	< LOD	107,2	< LOD	14,6 5,4	< LOD	< LOD	< LOD	45,3 < LOD	< LOD < LOQ
		< LOD		24,8				< LOD	< LOD	< LOD	773,7 334,5	5,5	•	< LOD	< LOD	< LOD	< LOD	< LOQ
	Dez 2019		40,8	28,4		95,5	12,0		< LOD	< LOD	·	< LOD	< LOD					
0.6	Jun 2020	< LOD	90,9	35,9	47,7	< LOQ	24,1	8,7			> 1000		< LOD	< LOQ	< LOQ	< LOQ	23,8	< LOQ
06	Mai 2018	< LOD	< LOD	75,7	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOD	16,7	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	40,2	< LOD	< LOD	< LOD	< LOD	16,2	< LOD	102,5	< LOD	< LOD	< LOD	< LOD	< LOD	45,0	< LOD
	Jul 2019	< LOD	< LOD	51,5	< LOD	< LOD	< LOD	29,1	9,7	< LOD	378,0	3,8	< LOD	< LOD	< LOD	< LOQ	< LOD	37,6
	Dez 2019	< LOD	40,8	28,4		95,5	12,0	< LOD	< LOD	< LOD	334,5	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jun 2020	< LOD	< LOD	32,4	< LOQ	11,8	14,0	11,9	13,5	< LOD	> 1000	< LOD	< LOD	< LOQ	10,0	69,8	21,8	< LOD
06a	Mai 2018	< LOD	< LOD	72,7	198,4	< LOD	416,0	116,6	< LOD	< LOQ	< LOD	< LOD	8,1	< LOD	< LOD	724,2	27,1	35,2
	Mai 2019	< LOD	< LOD	36,6	508,0	< LOD	> 1000	303,0	13,4	169,1	385,4	< LOD	21,8	< LOD	< LOD	> 1000	48,8	< LOQ
	Jul 2019	< LOD	15,4	33,0	296,2	< LOQ	524,5	141,2	< LOD	48,6	449,5	14,6	< LOD	< LOD	< LOQ	> 1000	254,4	83,9
	Dez 2019	< LOD	64,6	24,0	43,8	47,6	72,0	75,1	< LOD	< LOQ	293,7	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	< LOQ
	Jun 2020	< LOD	720,6	161,5	99,3	< LOD	166,9	67,3	< LOD	< LOD	> 1000	< LOD	< LOD	< LOQ	< LOD	> 1000	20,3	57,5
06b	Mai 2018	< LOD	< LOD	164,4	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	35,7	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	< LOD	< LOD	29,6	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	349,9	12,6	< LOD	< LOD	< LOD	27,2	546,1	21,1
	Dez 2019	< LOD	33,5	29,2	< LOD	< LOD	8,5	< LOD	< LOD	< LOD	130,8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jun 2020	< LOD	3398,9	30,6	< LOD	< LOD	9,6	< LOD	< LOD	< LOD	> 1000	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOQ	< LOQ
06c	Mai 2018	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD

PNstelle	Datum	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
	Jul 2019	22,6	14,4	< LOQ	< LOD	< LOQ	< LOD	< LOD	9,6	< LOD	76,3	14,9	< LOD	< LOD	< LOD	23,2	< LOD	< LOD
	Dez 2019	< LOD	48,2	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	37,0	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jun 2020	< LOD	< LOD	< LOD	< LOD	< LOD	9,2	< LOD	< LOD	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ
06d	Mai 2018	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	13,3	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	38,0	11,8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Dez 2019																	
	Jun 2020	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	30,4	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ
06e	Mai 2018	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOQ	< LOD	< LOD	< LOD	397,0	< LOD	< LOD
	Dez 2019	< LOD	27,9	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	20,8	< LOD	< LOD	< LOD	< LOD	303,9	< LOD	< LOD
	Jun 2020	< LOD	< LOD	< LOD	< LOD	< LOD	8,5	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
07	Mai 2018	< LOD	< LOD	32,2	< LOD	< LOD	26,8	< LOQ	< LOD	< LOD	13,3	< LOD	< LOD	< LOD	< LOD	20,8	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	342,4	< LOD	637,1	164,1	11,3	125,3	270,1	< LOD	18,5	< LOD	< LOD	> 1000	50,7	< LOQ
	Jul 2019	19,1	8,4	18,7	301,1	< LOQ	504,2	139,5	10,7	36,8	390,3	5,5	8,2	< LOD	< LOD	> 1000	342,3	75,9
	Dez 2019	< LOD	71,2	24,3	< LOQ	77,2	28,9	22,8	< LOD	< LOD	345,8	< LOD	< LOD	< LOD	< LOD	527,4	< LOD	< LOQ
	Jun 2020	< LOD	915,4	97,9	91,4	< LOD	172,0	59,4	13,2	< LOD	> 1000	< LOD	< LOD	< LOQ	< LOD	> 1000	23,1	63,8
08	Mai 2018	< LOD	7,3	< LOD	346,0	< LOD	937,3	266,6	< LOD	< LOQ	390,2	< LOD	9,3	< LOD	< LOD	> 1000	82,3	32,4
	Mai 2019	< LOD	< LOD	< LOD	244,6	< LOD	453,9	121,6	< LOD	89,7	242,6	< LOD	16,8	< LOD	< LOD	901,1	40,6	< LOQ
	Jul 2019	< LOD	23,6	51,0	117,3	< LOQ	186,7	48,4	10,0	< LOQ	419,4	< LOD	< LOD	< LOQ	< LOD	440,3	297,2	61,2
	Dez 2019	< LOD	74,6	20,7	31,6	67,8	50,8	37,0	< LOD	< LOD	295,3	< LOD	< LOD	< LOD	< LOD	748,6	< LOD	< LOQ
	Jun 2020	< LOD	649,7	161,5	48,8	< LOD	114,9	38,2	< LOD	< LOD	> 1000	< LOD	< LOD	< LOQ	< LOQ	> 1000	23,8	54,1

PNstelle	Datum	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
08a	Mai 2018	< LOD	< LOD	22,5	< LOD	< LOD	177,1	43,9	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	92,8	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	31,9	< LOD	< LOD	< LOD	< LOD	< LOD	827,2	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	< LOD	< LOD	34,8	< LOQ	< LOQ	12,4	< LOD	9,6	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	36,4	< LOQ	39,6
	Dez 2019	< LOD	< LOD	< LOQ	51,3	< LOD	9,0	< LOD	< LOD	< LOD	273,3	< LOD	< LOD	< LOD	< LOD	106,1	< LOD	< LOQ
	Jun 2020	< LOD	< LOD	42,2	< LOD	< LOD	11,1	< LOD	< LOD	< LOD	> 1000	< LOD	< LOD	1,6	< LOD	112,7	< LOD	36,1
09	Mai 2018																	
	Mai 2019	< LOD	< LOD	33,9	353,7	< LOD	680,9	192,6	< LOD	133,7	305,7	< LOD	14,4	< LOD	< LOD	> 1000	48,5	< LOQ
	Jul 2019	< LOD	17,8	54,6	172,3	< LOQ	302,9	62,3	9,7	< LOQ	707,1	9,5	< LOD	< LOD	< LOD	725,5	227,6	88,6
	Dez 2019	< LOD	72,1	56,3	32,1	53,8	31,6	24,7	< LOD	< LOD	320,3	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jun 2020	< LOD	840,9	92,2	78,4	< LOD	133,4	53,3	< LOD	< LOD	> 1000	< LOD	< LOD	< LOQ	< LOD	> 1000	21,4	53,2
10	Mai 2018	< LOD	< LOD	34,0	< LOD	< LOD	143,1	24,2	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	126,5	< LOD	< LOD
	Mai 2019	< LOD	< LOD	< LOD	229,2	< LOD	306,3	88,8	< LOD	57,5	207,5	< LOD	14,3	< LOD	< LOD	318,0	29,8	< LOQ
	Jul 2019	< LOD	< LOQ	78,9	204,2	< LOQ	294,1	60,8	9,5	< LOQ	> 1000	17,0	< LOD	< LOD	< LOD	338,1	337,5	63,3
	Dez 2019	< LOD	46,7	24,2	32,4	33,9	32,5	20,7	< LOD	< LOD	486,5	< LOD	< LOD	< LOD	< LOD	500,8	< LOD	< LOD
	Jun 2020	< LOD	5015,5	109,7	150,9	< LOD	277,9	103,2	< LOD	< LOD	> 1000	< LOD	18,0	< LOQ	< LOD	> 1000	27,3	57,7
10a	Mai 2018	< LOD	< LOD	62,4	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOD	74,1	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	159,8
	Mai 2019	< LOD	< LOD	50,4	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	35,7	< LOD	< LOD	< LOD	< LOD	< LOD	468,8	32,4
	Jul 2019	< LOD	< LOD	100,5	< LOQ	< LOD	19,4	< LOD	9,6	< LOD	281,4	2,4	5,7	< LOD	< LOD	< LOQ	53,5	243,8
	Dez 2019	< LOD	< LOD	31,3	< LOQ	< LOD	13,9	< LOQ	< LOD	< LOD	133,8	< LOD	< LOD	< LOD	< LOD	89,8	< LOD	< LOD
	Jun 2020	< LOD	< LOD	150,5	< LOQ	< LOD	17,7	12,0	13,8	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	233,4	25,0	> 1000
10b	Mai 2018	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOD	96,2	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	37,6
	Mai 2019	< LOD	< LOD	40,2	< LOQ	< LOD	< LOD	< LOD	19,8	< LOD	49,6	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	46,3
	Jul 2019	< LOD	< LOD	134,7	< LOQ	< LOD	19,7	< LOD	9,8	< LOD	269,5	8,0	< LOD	< LOD	< LOD	42,1	106,0	105,5

PNstelle	Datum	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
	Dez 2019	< LOD	< LOD	26,5	< LOD	< LOD	10,2	< LOD	< LOD	< LOD	125,0	< LOD	< LOD	< LOD	< LOD	147,5	< LOD	< LOD
	Jun 2020	< LOD	< LOD	119,4	< LOD	< LOD	17,6	< LOD	14,7	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	240,0	< LOQ	121,3
11	Mai 2018	< LOD	< LOD	43,7	< LOD	< LOD	79,1	16,1	< LOD	< LOD	7,9	< LOD	< LOD	< LOD	< LOD	89,5	< LOD	< LOQ
	Mai 2019	< LOD	< LOD	< LOD	206,9	< LOD	276,8	73,9	< LOD	78,1	176,8	< LOD	13,7	< LOD	< LOD	363,9	49,7	< LOD
	Jul 2019	< LOD	< LOQ	65,2	299,3	11,4	362,3	93,2	< LOD	< LOQ	> 1000	3,4	6,0	< LOD	< LOD	390,3	355,6	82,9
	Dez 2019	< LOD	< LOD	< LOQ	< LOQ	25,0	38,7	19,5	< LOD	< LOD	325,9	< LOD	< LOD	< LOD	< LOD	329,8	< LOD	< LOD
	Jun 2020	298,9	7161,2	102,6	128,5	< LOD	306,0	105,0	13,2	< LOD	> 1000	< LOD	< LOD	< LOQ	< LOD	> 1000	16,6	47,0
11a	Mai 2018	< LOD	< LOD	178,3	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Mai 2019	< LOD	< LOD	30,2	< LOD	< LOD	29,4	< LOD	< LOD	< LOD	54,5	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	22,7
	Jul 2019	< LOD	10,6	68,3	< LOD	< LOQ	10,1	< LOD	10,5	< LOD	137,9	13,3	< LOD	< LOD	< LOD	45,0	< LOD	79,2
	Dez 2019	< LOD	< LOD	< LOQ	< LOQ	< LOD	8,7	8,6	< LOD	< LOD	90,9	< LOD	< LOD	< LOD	< LOD	273,5	< LOQ	< LOQ
	Jun 2020	< LOD	72,2	< LOQ	< LOD	< LOD	9,5	< LOD	13,7	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	298,3	< LOD	80,0
Aasee	Mai 2018	< LOD	< LOD	< LOD	< LOD	< LOD	40,7	24,4	< LOD	< LOD	146,4	19,0	< LOD	< LOD	< LOD	< LOQ	32,4	61,1
	Mai 2019	< LOD	< LOD	< LOD	84,4	< LOD	99,7	28,5	< LOD	24,9	52,7	< LOD	< LOD	< LOD	< LOD	< LOD	38,3	31,0
	Jul 2019	< LOD	< LOQ	25,4	103,1	< LOQ	33,5	34,3	11,3	< LOQ	889,5	9,5	< LOD	< LOD	< LOD	< LOD	< LOQ	88,4
	Dez 2019	< LOD	12,7	20,6	26,0	39,0	31,8	14,9	< LOD	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	444,7	< LOD	< LOQ
	Jun 2020	< LOD	710,8	37,1	71,7	< LOD	41,6	56,2	14,3	< LOQ	> 1000	< LOD	< LOD	< LOD	< LOD	330,5	29,4	146,7
12	Mai 2018	< LOD	< LOD	39,3	< LOD	< LOD	43,0	14,2	< LOD	< LOD	9,8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ
	Mai 2019	< LOD	< LOD	< LOD	59,5	< LOD	64,7	30,5	< LOD	< LOD	47,5	< LOD	< LOD	< LOD	< LOD	< LOD	17,1	23,2
	Jul 2019	< LOD	< LOQ	41,9	90,2	< LOQ	27,2	33,6	11,5	< LOQ	858,9	20,4	< LOD	< LOD	< LOD	< LOD	< LOQ	71,3
	Dez 2019	< LOD	< LOD	22,8	29,9	28,7	41,9	16,6	< LOD	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	674,9	< LOD	< LOQ
	Jun 2020	< LOD	231,1	24,0	73,6	< LOD	20,2	41,4	14,2	< LOQ	> 1000	< LOD	< LOD	< LOD	< LOD	79,0	30,5	121,4
13	Mai 2018	< LOD	< LOD	28,2	< LOD	< LOD	19,8	26,4	< LOD	< LOD	107,8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	23,6

PNstelle	Datum	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
	Mai 2019	< LOD	< LOD	< LOD	51,9	< LOD	53,5	24,7	< LOD	< LOD	40,9	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	23,8
	Jul 2019	< LOD	7,5	50,9	92,9	< LOQ	30,0	32,7	11,7	< LOQ	839,0	7,9	< LOD	< LOD	< LOD	< LOD	< LOQ	78,2
	Dez 2019	< LOD	9,6	40,5	27,1	27,8	38,4	18,1	< LOD	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	971,4	< LOD	< LOQ
	Jun 2020	< LOD	197,6	30,6	70,8	< LOD	18,8	42,2	14,2	< LOQ	> 1000	< LOD	< LOD	< LOD	< LOD	60,5	30,6	120,6
14	Mai 2018	< LOD	< LOD	82,6	< LOD	< LOD	24,4	25,6	< LOD	< LOD	116,2	3,8	< LOD	< LOD	< LOD	444,2	17,7	57,3
	Mai 2019	< LOD	< LOD	< LOD	49,0	< LOD	42,8	25,1	< LOD	< LOD	49,4	< LOD	12,6	< LOD	< LOD	< LOD	< LOQ	26,4
	Jul 2019	< LOD	< LOD	74,7	88,1	< LOQ	29,2	33,6	11,4	< LOQ	752,2	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	87,2
	Dez 2019	< LOD	< LOD	23,1	28,1	23,3	39,0	16,8	< LOD	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	303,9	< LOD	22,1
	Jun 2020	< LOD	42,7	38,7	70,3	< LOD	20,2	45,7	14,0	< LOQ	> 1000	< LOD	< LOD	< LOD	< LOD	104,8	31,1	122,7
14a	Mai 2018	< LOD	< LOD	123,1	< LOD	< LOD	< LOD	< LOD	7,0	< LOD	145,3	< LOD	< LOD	< LOD	< LOD	27,9	< LOD	< LOD
	Mai 2019	< LOD	< LOD	60,9	< LOD	< LOD	12,6	< LOD	< LOD	< LOD	42,5	< LOD	11,8	< LOD	< LOD	< LOD	< LOD	37,6
	Jul 2019	< LOD	< LOD	50,2	< LOD	< LOD	< LOD	< LOD	9,6	< LOD	129,8	7,2	< LOD	< LOD	< LOD	< LOQ	< LOD	263,6
	Dez 2019																	
	Jun 2020	< LOD	< LOD	66,6	< LOD	< LOD	11,7	< LOD	13,3	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	11,3	18,6	391,8
14b	Mai 2018	< LOD	< LOD	164,4	< LOD	< LOD	6,0	< LOD	< LOD	< LOD	198,3	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	101,4
	Mai 2019	< LOD	< LOD	82,6	< LOD	< LOD	18,3	< LOD	< LOD	< LOD	35,3	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ
	Jul 2019	< LOD	< LOD	63,0	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	182,7	< LOQ	< LOD	< LOQ	< LOD	< LOD	< LOQ	352,7
	Dez 2019	< LOD	< LOD	47,7	< LOQ	11,8	< LOD	< LOD	< LOD	< LOD	68,7	< LOD	< LOD	< LOD	< LOD	91,1	< LOD	< LOD
	Jun 2020	< LOD	< LOD	41,2	< LOD	< LOD	10,1	< LOD	13,5	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	58,6	21,1	605,3
14c	Mai 2018	< LOD	< LOD	56,0	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ
	Mai 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	54,7	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	< LOD	< LOD	46,1	< LOD	< LOD	< LOD	< LOD	9,5	< LOD	246,6	15,0	< LOD	< LOD	< LOD	< LOD	< LOQ	110,3
	Dez 2019	< LOD	< LOD	31,7	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	102,0	< LOD	< LOD	< LOD	< LOD	86,7	< LOD	< LOQ

PNstelle	Datum	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
4	Jun 2020	< FOD < FOD	< FOD	< LOQ	<u>ت</u> ق < LOD	く LOD	<u>ڪُڪَ</u> 9,5	< LOD	13,3	< FOD 	<u>ت</u> و > 1000	<u>ت</u> ھ < LOD	<u>ت ه</u> < LOD	<u>ت</u> ھ < LOD	<u>ت</u> ق < LOD	<u>ت</u> ق 42,0	<u>ک</u> کے < LOD	<u>ڪُڪُ</u> 27,3
14d	Mai 2018	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
140	Mai 2019	< LOD	< LOD	< LOD	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Jul 2019	< LOD	< LOD	18,7	< LOQ	< LOD	< LOD	< LOD	10,6	< LOD	120,1	10,1	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ
	Dez 2019	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	37,5	< LOD	< LOD	< LOD	< LOD	129,1	< LOD	< LOD
	Jun 2020	< LOD	< LOD	< LOQ	< LOD	< LOD	8,9	< LOD	14,5	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	30,9	49,1	< LOQ
15	Mai 2018	< LOD	< LOD	57,2	< LOD	< LOD	34,8	13,9	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	22,8
	Mai 2019	< LOD	< LOD	< LOD	54,8	< LOD	38,1	22,3	< LOD	< LOD	41,4	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	25,8
	Jul 2019	< LOD	< LOD	76,0	76,4	< LOQ	27,3	32,0	10,7	< LOQ	687,7	< LOD	5,9	< LOD	< LOD	101,5	< LOQ	151,3
	Dez 2019	< LOD	12,7	30,2	25,9	21,1	33,3	14,6	< LOD	< LOD	814,9	< LOD	< LOD	< LOD	< LOD	231,6	< LOD	< LOQ
	Jun 2020	< LOD	78,0	31,7	64,8	< LOQ	16,1	33,9	14,1	< LOQ	> 1000	< LOD	< LOD	< LOD	< LOD	41,4	27,2	138,7
16	Mai 2018	< LOD	< LOD	48,3	< LOD	< LOD	20,5	< LOQ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOD	27,6
10	Mai 2019	< LOD	< LOD	< LOD	48,6	< LOD	34,0	21,6	< LOD	< LOD	41,3	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOQ	21,5
	Jul 2019	< LOD	< LOD	741,8	62,0	< LOD	50,4	12,1	< LOD	< LOD	289,1	20,0	5,9	< LOD	< LOD	< LOQ	20,6	264,9
	Dez 2019	< LOD	18,9	24,7	27,6	26,0	39,0	17,9	< LOD	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	295,9	< LOD	< LOQ
	Jun 2020	< LOD	< LOD	32,5	62,1	< LOQ	15,3	31,9	13,3	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	22,1	24,7	117,1
16a	Mai 2018	< LOD	< LOD	< LOD	758,6	< LOQ	1	753,5	< LOD	< LOD	< LOD	< LOD	25,1	< LOD	< LOD	> 1000	< LOQ	38,9
10a	Mai 2019	< LOD	< LOD	< LOD	449,5	< LOD	> 1000	546,3	< LOD	82,7	39,3	< LOD	33,6	< LOD	< LOD	> 1000	24,6	36,7
	Jul 2019	< LOD	< LOQ	24,8	657,8	< LOQ		919,1	12,3	< LOQ	86,6	< LOD	19,7	< LOD	< LOD	877,9	17,1	149,4
	Dez 2019	< LOD	< LOQ	< LOQ	290,0	< LOQ		659,0	15,6	< LOQ	35,1	< LOD	27,8	< LOD	< LOD	> 1000	< LOD	< LOQ
	Jun 2020	< LOD	< LOD	< LOQ	98,6	< LOQ	245,4	99,2	13,7	< LOQ	341,0	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	21,7
1.Ch								•										
16b	Mai 2018	< LOD	< LOD	< LOD	817,0	< LOD		809,2	< LOD	24,7	66,8	< LOD	12,1	< LOD	< LOD	466,5	< LOD	35,4
	Mai 2019	< LOD	< LOD	< LOD	561,9	< LOD	> 1000	768,4	< LOD	37,1	< LOD	< LOD	40,7	< LOD	< LOD	> 1000	24,8	44,3

PNstelle	Datum	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
	Jul 2019	< LOD	6,7	< LOD	679,0	< LOQ	> 1000	917,4	12,2	< LOQ	102,5	< LOD	13,1	< LOD	< LOD	436,3	< LOQ	95,6
	Dez 2019	< LOD	< LOD	22,2	419,3	< LOD	> 1000	> 1000	14,4	< LOQ	51,0	< LOD	35,8	< LOD	< LOD	> 1000	< LOD	21,7
	Jun 2020	< LOD	< LOD	20,1	318,5	< LOD	996,1	502,8	14,4	< LOQ	992,0	< LOD	22,0	< LOD	< LOD	> 1000	< LOQ	51,4
17	Mai 2018	< LOD	< LOD	< LOD	310,4	< LOD	650,6	277,3	< LOD	< LOD	90,6	4,7	6,1	< LOD	< LOD	612,8	< LOQ	64,2
	Mai 2019	< LOD	< LOD	< LOD	164,4	< LOD	412,5	122,4	< LOD	31,9	< LOD	< LOD	18,3	< LOD	< LOD	873,3	< LOQ	41,3
	Jul 2019	< LOD	< LOD	74,5	176,1	< LOQ	304,3	122,1	10,5	< LOQ	291,9	< LOD	5,5	< LOD	< LOD	243,7	< LOQ	240,3
	Dez 2019	< LOD	< LOD	26,7	47,1	24,6	97,5	56,8	< LOD	< LOD	> 1000	< LOD	12,5	< LOD	< LOD	906,2	< LOD	< LOQ
	Jun 2020																	
18	Mai 2018	< LOD	< LOD	44,0	232,9	< LOD	496,6	156,6	< LOD	< LOD	< LOD	< LOD	12,1	< LOD	< LOD	466,5	< LOD	35,4
	Mai 2019	< LOD	< LOD	< LOD	170,7	< LOD	421,6	131,8	< LOD	36,9	40,6	< LOD	16,9	< LOD	< LOD	764,3	< LOQ	30,2
	Jul 2019	< LOD	< LOD	575,2	269,9	< LOQ	519,9	161,2	10,4	< LOQ	249,5	10,8	10,5	< LOD	< LOD	649,6	16,6	229,1
	Dez 2019	< LOD	< LOD	26,1	50,1	25,5	104,8	62,5	13,3	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	873,3	< LOD	< LOQ
	Jun 2020	< LOD	73,0	27,6	86,2	< LOQ	80,7	53,8	13,5	< LOQ	> 1000	< LOD	< LOD	< LOD	< LOD	851,9	22,7	106,3
19	Mai 2018	< LOD	< LOD	88,9	331,5	< LOD	734,8	187,6	< LOD	26,3	110,7	< LOD	9,4	< LOD	< LOD	474,8	< LOD	131,8
	Mai 2019	< LOD	< LOD	< LOD	198,8	< LOD	497,3	134,4	< LOD	29,7	50,2	< LOD	16,6	< LOD	< LOD	699,0	< LOQ	45,9
	Jul 2019	< LOD	< LOD	844,4	210,6	< LOD	360,1	67,0	10,0	< LOD	385,8	8,2	11,2	< LOD	< LOD	348,3	16,9	290,3
	Dez 2019	< LOD	< LOD	27,2	47,1	29,6	85,9	58,8	< LOD	< LOD	> 1000	< LOD	< LOD	< LOD	< LOD	769,4	< LOD	< LOQ
	Jun 2020	< LOD	103,3	35,7	105,6	< LOQ	186,6	87,5	13,4	< LOQ	> 1000	< LOD	< LOD	< LOD	< LOD	> 1000	21,4	105,2

^{* =} keine Probenahme erfolgt

Anhang 11: Anionen und Kationen am Probensammler Roxeler Straße

Kalender woche	F-	CI-	NO ₂	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ²⁻	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
44/15	0,2	36,2	< LOD	< LOD	16,6	0,6	59,08	30,3	7,5	0,1	1,3	6,6	128,4	0,2	1,2	*
45/15	0,2	31,5	0,1	0,1	9,9	0,9	58,79	29,6	8,9	0,1	4,7	7,3	149,2	0,2	1,4	*
46/15	0,2	23,7	0,3	0,0	27,8	1,3	43,22	19,8	6,9	0,5	4,8	7,1	125,0	0,6	0,5	*
47/15	0,2	26,7	0,1	0,1	27,2	0,4	55,86	12,1	8,1	0,3	4,8	5,5	152,3	0,1	1,1	*
48/15	0,3	27,1	< LOD	< LOD	26,5	0,6	31,12	19,3	5,6	0,7	3,9	6,0	111,3	0,6	0,6	*
49/15	0,2	73,5	0,4	0,1	24,2	0,4	69,74	40,2	7,7	0,3	4,6	11,7	121,2	0,4	0,8	*
50/15	0,3	24,8	< LOD	< LOD	34,6	0,5	47,41	15,8	6,3	< LOD	2,0	5,6	125,0	0,1	0,9	*
51/15	0,2	30,1	0,1	< LOD	30,4	0,4	57,85	18,4	7,2	< LOD	2,1	5,2	144,2	0,2	1,1	*
52/15	0,2	27,5	< LOD	< LOD	30,2	0,6	47,54	25,8	8,2	0,1	3,5	5,8	156,2	0,2	1,1	*
53/15	0,2	29,0	< LOD	< LOD	25,5	0,5	48,52	28,1	8,4	0,1	3,6	6,0	163,9	0,2	1,2	*
01/16	0,2	31,1	< LOD	< LOD	24,3	0,4	51,87	28,1	8,1	0,1	3,5	5,6	159,6	0,1	1,2	*
02/16	0,3	26,3	< LOD	< LOD	26,7	0,7	41,68	24,0	7,3	0,2	3,1	5,2	139,9	0,3	0,9	*
03/16	0,2	25,6	< LOD	< LOD	25,9	0,4	40,02	24,0	7,2	0,2	3,0	5,3	135,9	0,3	0,9	*
04/16	0,2	23,4	< LOD	< LOD	24,2	0,6	35,77	22,4	6,8	0,5	3,0	5,7	131,4	0,7	0,8	*
05/16	0,2	24,9	0,1	< LOD	26,0	0,3	42,23	21,5	7,2	0,1	2,0	5,4	136,1	0,2	0,9	*
06/16	0,2	24,0	0,1	< LOD	25,1	0,3	40,96	22,0	7,0	0,1	1,9	5,2	128,1	0,3	0,9	*
07/16	0,2	27,1	0,1	< LOD	24,6	0,3	42,21	25,8	7,5	0,1	1,5	5,2	143,4	0,1	1,0	*
08/16	0,3	23,4	< LOD	< LOD	24,6	0,4	40,77	21,2	7,1	0,1	1,5	5,0	133,4	0,2	0,9	*
09/16	0,2	28,5	< LOD	< LOD	24,2	0,7	44,24	22,1	6,7	0,1	1,0	4,8	129,6	0,2	1,0	*
10/16	0,2	28,0	< LOD	< LOD	24,2	0,3	46,98	23,3	7,4	0,1	1,0	0,5	141,8	0,1	1,1	*
11/16	0,2	31,5	< LOD	< LOD	24,2	0,3	54,21	26,3	7,9	< LOD	0,9	4,7	151,0	0,1	1,2	*
12/16	0,2	33,6	0,3	< LOD	22,1	0,3	54,09	26,1	7,6	< LOD	0,8	4,9	143,0	0,1	1,2	*
13/16	0,2	31,4	< LOD	< LOD	22,1	0,3	47,56	25,1	7,7	< LOD	0,8	4,8	136,1	0,1	1,1	*

Kalender woche	F ⁻	Cl-	NO ₂	Br ⁻	NO ₃	PO ₄ ³⁻	SO ₄ ²	Na ⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn ³⁺
14/16	0,2	35,4	< LOD	< LOD	17,4	0,2	53,72	27,3	8,0	< LOD	0,6	5,0	141,8	0,1	1,3	*
15/16	0,4	37,9	0,2	< LOD	< LOD	0,1	102,7 0	30,3	7,7	< LOD	0,5	5,5	131,2	0,1	1,3	*
16/16	0,2	37,4	< LOD	< LOD	15,9	0,5	54,97	31,4	7,8	< LOD	1,4	5,5	135,2	0,1	1,4	*
17/16	0,2	33,3	< LOD	< LOD	15,4	< LOD	49,02	28,8	7,5	< LOD	1,9	5,4	125,1	0,1	1,2	*
18/16	0,2	33,7	< LOD	< LOD	12,9	0,1	51,67	28,7	7,9	< LOD	1,6	5,2	131,3	0,1	1,2	*
19/16	0,2	37,6	0,1	< LOD	12,0	0,2	59,12	34,2	8,1	< LOD	1,9	6,3	135,3	< LOD	1,4	*
20/16	0,2	56,2	< LOD	< LOD	17,6	0,2	73,26	36,6	8,0	< LOD	2,4	6,8	133,1	0,1	1,4	*
21/16	0,2	40,8	0,2	< LOD	11,9	0,3	61,94	34,8	7,4	< LOD	2,9	7,0	126,7	< LOD	1,4	*
22/16	0,3	27,2	0,2	< LOD	35,3	0,4	47,94	21,9	6,3	< LOD	3,2	6,6	110,7	0,2	1,0	*
23/16	0,2	27,9	0,2	< LOD	23,0	0,5	48,43	22,9	6,7	0,1	3,3	6,4	126,4	0,1	1,1	*
24/16	0,2	24,4	0,3	< LOD	34,0	0,6	39,36	21,3	6,3	0,3	3,4	6,5	116,9	0,3	0,9	*
25/16	0,2	19,6	< LOD	< LOD	31,9	0,9	36,48	18,2	6,4	0,4	1,7	7,2	118,3	0,6	0,9	*
26/16	0,2	20,6	< LOD	< LOD	25,8	0,6	38,80	18,7	6,8	0,3	1,8	6,6	128,4	0,5	0,9	*
48/16	0,2	37,9	< LOD	< LOD	21,0	0,3	65,48	31,4	8,6	< LOD	1,2	6,0	157,9	0,2	1,4	*
21/17	0,2	52,7	< LOD	< LOD	14,5	0,3	76,95	45,6	7,5	< LOD	4,1	8,1	117,0	< LOD	1,4	*
46/17	0,2	47,6	< LOD	< LOD	17,7	1,1	71,03	33,1	9,4	< LOD	0,4	7,0	146,3	0,1	1,5	< LOD
19/18	0,2	43,5	0,1	< LOD	10,3	0,4	63,34	35,9	8,1	< LOD	1,6	7,1	134,5	0,1	1,5	< LOD
44/18	0,1	53,6	< LOD	< LOD	5,7	0,3	59,91	44,1	5,8	0,1	1,2	10,6	75,3	0,3	0,9	0,3
16/19	0,2	39,3	< LOD	< LOD	12,4	0,2	67,64	31,9	8,3	< LOD	0,4	6,2	134,8	< LOD	1,5	< LOD
41/19	0,1	33,9	< LOD	< LOD	4,8	0,5	56,99	33,9	5,6	< LOD	4,0	7,8	81,1	< LOD	0,7	< LOD
14/20	0,4	34,0	< LOD	< LOD	20,6	0,8	67,20	25,1	7,1	0,1	1,0	4,6	142,9	0,3	1,0	0,1
38/20	0,1	80,6	< LOD	< LOD	2,9	0,3	83,63	68,3	7,5	0,1	1,4	16,3	103,9	0,3	1,2	0,2

^{* =} keine Probenahme erfolgt

Anhang 12: Konzentration der detektierten Target-Substanzen am Probensammler Roxeler Straße

Kalenderwoche	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
47/16	< LOD	< LOD	29,5	163,6	45,7	134,1	18,7	< LOD	< LOD	34,3	< LOD	< LOD	< LOD	< LOD	54,1	< LOD	< LOD
48/16	< LOD	< LOD	31,7	275,3	< LOD	254,5	37,9	< LOD	< LOD	22,5	< LOD	< LOD	< LOD	< LOD	161,3	< LOD	< LOD
49/16	< LOD	< LOD	33,4	403,9	< LOD	362,6	47,8	< LOD	< LOD	18,8	< LOD	< LOD	< LOD	< LOD	195,2	< LOD	< LOD
50/16	< LOD	< LOD	39,2	235,8	< LOD	198,6	33,9	< LOD	< LOD	24,1	< LOD	< LOD	< LOD	< LOD	116,4	< LOD	< LOD
51/16	< LOD	< LOD	35,6	247,8	< LOD	220,5	34,3	< LOD	< LOD	20,6	< LOD	< LOD	< LOD	< LOD	98,6	< LOD	< LOD
52/16	< LOD	< LOD	32,4	145,7	< LOD	135,5	28,5	< LOD	< LOD	22,6	< LOD	< LOD	< LOD	< LOD	61,1	< LOD	< LOD
01/17	< LOD	< LOD	53,7	147,9	23,7	136,4	28,2	< LOD	< LOD	25,4	< LOD	< LOD	< LOD	< LOD	69,0	< LOD	< LOD
02/17	< LOD	< LOD	24,3	65,1	62,3	50,7	14,4	< LOD	< LOD	33,4	< LOD	< LOD	< LOD	< LOD	20,7	< LOD	< LOD
03/17	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
04/17	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
05/17	< LOD	< LOD	29,4	126,0	< LOD	65,3	16,8	< LOD	25,8	25,0	< LOD	< LOD	< LOD	< LOD	134,4	< LOD	< LOD
06/17	< LOD	< LOD	169,1	83,3	12,5	77,5	24,3	< LOD	< LOD	20,6	< LOD	< LOD	< LOD	< LOD	210,4	< LOD	< LOD
07/17	< LOD	< LOD	53,4	160,2	< LOD	139,8	37,2	< LOD	< LOD	18,2	< LOD	< LOD	< LOD	< LOD	80,1	< LOD	< LOD
08/17	< LOD	< LOD	32,3	83,7	42,8	60,7	18,3	< LOD	< LOD	31,9	< LOD	< LOD	< LOD	< LOD	34,9	< LOD	< LOD
09/17	< LOD	< LOD	26,2	50,1	19,6	45,5	13,0	< LOD	< LOD	28,8	< LOD	< LOD	< LOD	< LOD	< LOQ	< LOD	< LOD
10/17	< LOD	< LOD	29,9	48,7	17,3	47,4	16,8	< LOD	< LOD	25,8	< LOD	< LOD	< LOD	< LOD	24,1	< LOD	< LOD
11/17	< LOD	< LOD	34,7	103,7	< LOD	81,0	26,2	< LOD	< LOD	21,5	< LOD	< LOD	< LOD	< LOD	75,6	< LOD	< LOD
12/17	< LOD	< LOD	28,6	96,5	< LOD	78,1	31,8	< LOD	< LOD	18,6	< LOD	< LOD	< LOD	< LOD	60,4	< LOD	< LOD
13/17	< LOD	< LOD	42,9	179,8	< LOD	133,9	54,0	< LOD	< LOD	19,7	< LOD	< LOD	< LOD	< LOD	165,0	< LOD	< LOD

Kalenderwoche	Atrazin- Desethyl[ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol [ng/L]	Phenazone [ng/L]	Propyphenazon e[ng/L]	Sulfamethoxaz ol[ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat [ng/L]	Bromoxynil [ng/L]	Dichlorprop-P [ng/L]	Diclofenac [ng/L]	MCPA [ng/L]	Mecoprop-P [ng/L]
,	< LOD	< LOD	52,6	244,7	< LOD	191,6	68,8	< LOD	< LOD	19,0	< LOD	< LOD	< LOD	< LOD	215,9	< LOD	< LOD
,	< LOD	< LOD	34,4	330,5	< LOD	240,3	89,1	< LOD	< LOD	17,0	< LOD	< LOD	< LOD	< LOD	235,5	< LOD	< LOD
16/17	< LOD	< LOD	30,3	365,5	< LOD	284,8	96,5	< LOD	< LOD	147,0	< LOD	< LOD	< LOD	< LOD	209,4	< LOD	< LOD
17/17	< LOD	< LOD	31,7	467,1	< LOD	338,5	98,7	< LOD	< LOD	106,6	< LOD	< LOD	< LOD	< LOD	253,7	< LOD	< LOD
18/17	< LOD	< LOD	33,1	292,5	< LOD	233,9	53,9	< LOD	< LOD	36,9	< LOD	< LOD	< LOD	< LOD	195,9	< LOD	< LOD
19/17	< LOD	< LOD	25,8	552,8	< LOD	186,1	55,8	< LOD	49,9	69,3	< LOD	< LOD	< LOD	< LOD	256,2	87,9	73,1
20/17	< LOD	< LOD	< LOD	622,8	< LOD	100,2	9,6	< LOD	77,0	159,4	< LOD	< LOD	< LOD	< LOD	214,5	30,7	55,7
21/17	< LOD	8,0	37,6	683,1	< LOD	288,7	109,4	4,8	34,0	177,7	< LOD	< LOD	< LOD	< LOD	166,9	133,7	< LOD
22/17	< LOD	< LOD	< LOD	1051,9	< LOD	433,2	169,9	5,7	25,3	102,2	< LOD	< LOD	< LOD	< LOD	210,7	135,7	< LOD
23/17	< LOD	< LOD	19,9	1215,5	< LOD	455,1	100,7	10,1	43,5	203,4	< LOD	< LOD	< LOD	64,8	296,5	24,9	44,5
24/17	< LOD	< LOD	< LOD	1190,4	< LOD	404,8	124,3	6,2	40,7	234,3	< LOD	< LOD	< LOD	26,2	227,8	22,2	< LOD
25/17	< LOD	< LOD	< LOD	1590,3	< LOD	386,1	99,7	5,8	98,3	115,6	< LOD	< LOD	< LOD	24,4	227,4	72,5	37,6
26/17	< LOD	< LOD	< LOD	1677,4	< LOD	661,4	175,4	6,3	72,9	101,1	< LOD	< LOD	< LOD	65,3	853,0	53,7	76,9
40/17	< LOD	< LOD	50,5	308,3	< LOD	186,4	42,2	< LOD	< LOD	46,3	< LOD	< LOD	< LOD	< LOD	268,3	< LOD	< LOD
14/18	< LOD	< LOD	44,2	118,3	< LOD	81,7	34,9	< LOD	< LOD	10,0	< LOD	< LOD	< LOD	< LOD	197,3	< LOD	< LOD
40/18	< LOD	< LOD	89,8	328,4	< LOD	863,1	238,0	< LOD	91,8	58,7	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	123,7
14/19	< LOD	< LOD	< LOD	51,0	< LOD	89,5	27,3	< LOD	26,6	39,4	< LOD	< LOD	< LOD	< LOD	473,3	< LOD	36,3
40/19	< LOD	< LOD	96,6	212,5	< LOD	339,2	89,1	16,7	47,3	> 1000	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	< LOD
14/20	< LOD	< LOD	32,4	99,8	< LOD	128,9	47,8	< LOD	< LOD	172,2	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	< LOD
40/20	< LOD	< LOD	38,2	407,7	< LOD	506,8	118,3	6,8	106,0	68,8	< LOD	11,9	< LOD	< LOD	329,0	< LOD	21,6

^{* =} keine Probenahme erfolgt

Anhang 13: Anionen und Kationen am Probensammler Mündung

Kalsnderwoche	F ⁻	CI-	NO ₂ -	Br ⁻	NO ₃ -	PO ₄ ³⁻	SO ₄ ²⁻	Na⁺	Mg ²⁺	Al ³⁺	Si ²⁺	K ⁺	Ca ²⁺	Fe ²⁺	Sr ²⁺	Mn³+
41/18	0,2	138,7	< LOD	0,2	5,9	0,6	93,8	100,8	10,9	< LOD	1,9	26,0	110,8	0,1	1,0	0,1
12/19	0,2	47,1	0,2	< LOD	28,7	0,2	72,2	34,0	8,3	0,1	2,2	8,2	127,4	0,1	1,0	0,1
38/19	*	*	*	*	*	*	*	83,4	8,0	< LOD	4,2	19,8	95,0	0,2	0,8	0,1
12/20	0,2	46,7	< LOD	< LOD	19,7	< LOD	74,2	35,3	8,2	< LOD	3,9	7,5	130,7	0,1	0,8	< LOD
38/20	0,2	127,0	< LOD	< LOD	5,4	< LOD	88,1	93,0	9,3	< LOD	2,1	24,2	101,0	0,3	1,0	0,1

^{* =} keine Probenahme erfolgt

Anhang 14: Konzentration der detektierten Target-Substanzen bei am Probensammler Mündung

Kalenderwoche	Atrazin-Desethyl [ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolo[ng/L]	Phenazone[ng/L]	Propyphenazone [ng/L]	Sulfamethoxazol [ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat[ng/L]	Bromoxynil[ng/L]	Dichlorprop-P [ng/L]	Diclofenac[ng/L]	MCPA [ng/L]	Mecoprop-P[ng/L]
39/18	< LOD	< LOD	150,9	295,7	< LOD	> 1000	215,9	< LOD	81,1	78,6	< LOD	< LOD	< LOD	< LOD	853,6	< LOD	37,8
40/18	< LOD	< LOD	110,6	639,1	< LOD	778,5	97,6	< LOD	363,5	184,7	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	< LOD
41/18	< LOD	< LOD	105,1	474,1	< LOD	> 1000	554,4	< LOD	119,9	47,4	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	20,7
42/18	< LOD	< LOD	119,8	404,9	< LOD	> 1000	579,4	< LOD	154,5	58,9	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	< LOD
43/18	< LOD	< LOD	136,9	403,4	< LOD	> 1000	847,1	< LOD	203,3	50,4	< LOD	< LOD	< LOD	< LOD	> 1000	148,2	35,2
44/18	< LOD	< LOD	88,4	236,9	< LOD	914,4	304,4	< LOD	32,6	56,5	< LOD	< LOD	< LOD	< LOD	> 1000	54,7	< LOD
45/18	< LOD	< LOD	87,9	378,7	< LOD	> 1000	638,1	< LOD	43,5	43,3	< LOD	< LOD	< LOD	< LOD	> 1000	< LOD	56,8
46/18	< LOD	< LOD	112,2	397,4	< LOD	> 1000	774,4	< LOD	53,1	47,5	< LOD	11,5	< LOD	< LOD	> 1000	29,7	47,6
47/18	< LOD	< LOD	189,3	447,1	< LOD	> 1000	592,2	< LOD	39,2	31,9	< LOD	17,2	< LOD	< LOD	> 1000	< LOD	47,3
48/18	< LOD	< LOD	87,4	335,3	< LOD	> 1000	520,5	< LOD	46,1	40,9	< LOD	17,4	< LOD	< LOD	> 1000	< LOD	77,6
49/18	< LOD	< LOD	< LOD	150,9	< LOD	648,3	183,2	< LOD	23,4	28,3	< LOD	12,2	< LOD	< LOD	> 1000	< LOD	< LOD
50/18	< LOD	< LOD	< LOD	223,4	< LOD	958,9	322,8	< LOD	< LOD	42,7	< LOD	23,6	< LOD	< LOD	> 1000	< LOD	46,5
51/18	< LOD	< LOD	104,8	285,0	< LOD	> 1000	283,9	< LOD	131,9	39,2	< LOD	< LOD	< LOD	< LOD	> 1000	51,3	< LOD
52/18	< LOD	< LOD	75,8	119,4	< LOD	512,1	127,9	< LOD	< LOD	34,7	< LOD	< LOD	< LOD	< LOD	687,5	33,0	53,2
01/19	< LOD	< LOD	41,5	177,4	< LOD	750,8	145,7	< LOD	< LOD	45,3	< LOD	< LOD	< LOD	< LOD	940,3	25,9	< LOD
02/19	< LOD	< LOD	41,6	77,3	< LOD	381,5	78,1	< LOD	< LOD	31,1	< LOD	< LOD	< LOD	< LOD	692,7	< LOD	106,4
03/19	< LOD	< LOD	27,2	39,4	< LOD	192,7	54,2	< LOD	< LOD	36,9	< LOD	< LOD	< LOD	< LOD	319,8	< LOD	54,2
04/19	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
05/19	< LOD	< LOD	< LOD	31,3	< LOD	198,7	60,7	< LOD	< LOD	43,8	< LOD	< LOD	< LOD	< LOD	359,8	< LOD	69,9
06/19	< LOD	< LOD	< LOD	52,1	< LOD	253,2	65,4	< LOD	< LOD	29,2	< LOD	< LOD	< LOD	< LOD	362,7	< LOD	44,5
07/19	< LOD	< LOD	< LOD	29,9	< LOD	151,3	56,6	< LOD	< LOD	57,8	< LOD	< LOD	< LOD	< LOD	274,6	< LOD	53,8
08/19	< LOD	< LOD	< LOD	40,9	< LOD	226,0	90,1	< LOD	< LOD	33,9	< LOD	< LOD	< LOD	< LOD	399,0	< LOD	< LOD
09/19	< LOD	< LOD	33,4	106,6	< LOD	394,8	151,0	< LOD	< LOD	33,7	< LOD	< LOD	< LOD	< LOD	729,7	< LOD	< LOD
10/19	< LOD	< LOD	20,1	83,1	< LOD	268,9	58,9	< LOD	26,4	21,8	< LOD	< LOD	< LOD	< LOD	458,6	< LOD	23,9
11/19	< LOD	< LOD	< LOD	< LOD	< LOD	96,9	22,6	< LOD	76,9	27,4	< LOD	< LOD	< LOD	< LOD	113,4	< LOD	23,0
12/19	< LOD	< LOD	< LOD	39,7	< LOD	197,2	40,4	< LOD	53,8	39,2	< LOD	< LOD	< LOD	< LOD	334,7	< LOD	52,5

Kalenderwoche	Atrazin-Desethyl [ng/L]	Atrazine[ng/L]	Caffeine[ng/l]	Carbamazepine [ng/L]	Chlorotoluron [ng/L]	Metoprolol[ng/L]	Phenazone[ng/L]	Propyphenazone [ng/L]	Sulfamethoxazol [ng/L]	Terbutylazine [ng/L]	Bentazon [ng/L]	Bezafibrat[ng/L]	Bromoxynil[ng/L]	Dichlorprop-P [ng/L]	Diclofenac[ng/L]	MCPA [ng/L]	Mecoprop-P[ng/L]
13/19	< LOD	< LOD	< LOD	84,4	< LOD	298,9	71,7	< LOD	32,9	35,0	< LOD	< LOD	< LOD	< LOD	577,7	< LOD	< LOD
14/19	< LOD	< LOD	32,4	100,2	< LOD	395,4	100,4	< LOD	< LOD	26,4	< LOD	< LOD	< LOD	< LOD	671,6	24,6	< LOD
15/19	< LOD	< LOD	< LOD	135,1	< LOD	488,7	151,0	< LOD	28,6	14,9	< LOD	< LOD	< LOD	< LOD	726,5	< LOD	< LOD
16/19	< LOD	< LOD	31,1	133,4	< LOD	433,7	128,5	< LOD	45,6	12,1	< LOD	< LOD	< LOD	< LOD	801,1	< LOD	65,9
17/19	< LOD	< LOD	26,6	152,6	< LOD	563,8	135,8	< LOD	25,3	25,1	< LOD	< LOD	< LOD	< LOD	990,5	35,5	116,8
18/19	< LOD	< LOD	22,8	190,2	< LOD	500,8	160,4	11,6	31,3	50,6	17,5	13,8	< LOD	< LOD	626,5	17,9	41,4
52/20	< LOD	< LOD	53,6	99,5	< LOD	451,8	66,5	< LOD	37,8	32,3	< LOD	< LOD	< LOD	< LOD	123,8	< LOD	34,5

^{* =} keine Probenahme erfolgt

Anhang 15: Konzentration der Sartane an den Probensammlern

			Sammle	er oberes EZ	G				Sammle	er unteres Ez	ZG	
KW	Candesartan [ng/l]	Irbesartan [ng/l]	Olmesartan [ng/l]	Telmisartan [ng/l]	Valsartan [ng/l]	Valsartansäure [ng/l]	Candesartan [ng/l]	Irbesartan [ng/l]	Olmesartan [ng/l]	Telmisartan [ng/l]	Valsartan [ng/l]	Valsartansäure [ng/l]
18/20	388,8	48,6	59,4	48,9	360,7	957,8	441,0	40,2	53,3	90,0	434,6	311,4
19/20	412,9	55,9	60,0	45,2	439,4	> 1000	775,6	56,9	82,5	107,1	645,3	588,1
20/20	665,5	76,4	90,4	55,3	602,3	> 1000	> 1000	68,9	104,5	115,0	838,2	776,3
21/20	785,1	103,1	94,0	65,5	648,8	> 1000	> 1000	72,7	113,5	125,9	876,9	794,6
22/20	786,9	76,3	98,9	64,1	294,0	> 1000	> 1000	69,5	111,1	136,9	858,2	848,6
23/20	863,4	88,5	108,0	47,8	492,7	> 1000	> 1000	61,1	96,0	113,7	817,7	666,1
24/20	645,3	60,4	90,7	39,9	152,8	> 1000	740,2	47,0	77,4	84,7	572,5	718,9
25/20	116,7	23,8	27,3	34,8	104,7	391,8	364,6	29,1	45,0	61,5	259,2	649,3
26/20	457,0	44,0	79,9	50,1	128,6	> 1000	817,6	39,9	85,2	69,0	279,1	> 1000
27/20	562,0	68,0	79,0	38,7	242,5	> 1000	670,9	43,1	74,0	81,4	205,1	> 1000
28/20	648,8	68,2	93,4	48,1	220,7	> 1000	869,0	48,0	85,0	76,7	285,3	> 1000
29/20	> 1000	117,7	138,5	49,4	425,2	> 1000	> 1000	55,6	103,9	72,2	628,7	> 1000
30/20	> 1000	95,2	168,4	41,4	208,7	> 1000	> 1000	64,0	126,6	95,7	473,9	> 1000
31/20	> 1000	95,9	179,0	< LOD	331,0	> 1000	> 1000	67,6	105,1	111,6	621,9	> 1000
32/20	> 1000	138,4	244,2	56,3	219,3	> 1000	> 1000	77,6	137,5	132,0	508,8	> 1000
33/20	> 1000	149,5	220,5	52,5	274,8	> 1000	> 1000	72,0	123,7	100,0	461,4	> 1000
34/20	> 1000	138,4	147,0	60,9	258,9	> 1000	> 1000	74,2	124,6	103,8	434,5	> 1000
35/20	> 1000	97,8	139,6	52,4	197,3	> 1000	> 1000	64,0	104,2	80,9	356,1	> 1000

			Sammle	er oberes EZ	G				Sammle	er unteres Ez	ZG	
ĸw	Candesartan [ng/l]	irbesartan [ng/l]	Olmesartan [ng/l]	Telmisartan [ng/l]	Valsartan [ng/l]	Valsartansäure [ng/l]	Candesartan [ng/l]	irbesartan [ng/l]	Olmesartan [ng/l]	Telmisartan [ng/l]	Valsartan [ng/l]	Valsartansäure [ng/l]
36/20	> 1000	123,3	152,8	57,9	166,4	> 1000	> 1000	57,9	100,7	83,4	238,7	> 1000
37/20	> 1000	151,2	152,6	58,9	204,9	> 1000	> 1000	69,2	111,4	72,6	264,0	> 1000
38/20	> 1000	144,7	247,6	73,7	115,7	> 1000	> 1000	87,2	155,9	116,0	322,4	> 1000
39/20	> 1000	146,2	233,6	42,2	160,7	> 1000	> 1000	89,2	138,9	118,2	327,6	> 1000
40/20	895,8	95,7	110,1	49,9	117,9	> 1000	> 1000	60,4	105,2	91,3	254,4	> 1000
41/20	837,6	94,9	100,0	< LOD	206,9	> 1000	858,0	55,0	85,8	75,5	240,6	> 1000
42/20	701,8	86,3	96,8	47,1	117,7	> 1000	893,0	56,6	81,3	105,8	227,7	> 1000
43/20	847,5	113,5	113,1	48,6	169,8	> 1000	> 1000	72,3	98,4	92,8	314,0	> 1000
44/20	347,1	50,7	54,6	54,6	113,8	> 1000	642,4	49,7	68,6	89,0	220,8	> 1000

Anhang 16: Kleinkläranlagen mit Einleitung in die Oberflächengewässer im EZG Münstersche Aa

Science of the Total Environment xxx (xxxx) xxx

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

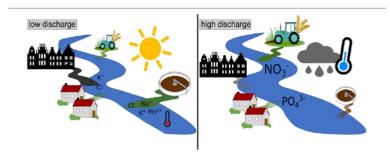
Spatiotemporal variations of surface water quality in a medium-sized river catchment (Northwestern Germany) with agricultural and urban land use over a five-year period with extremely dry summers

Johanna Buss, Christine Achten*

Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstrasse 24, 48149 Münster, Germany

HIGHLIGHTS

- A total of 519 samples were collected and analyzed for major ions during 2015–2020.
- Up to 100% treated wastewater in German lowland river during extremely dry summers.
- Merging long-term monitoring and grab sampling allows to identify major ion sources.
- A load of up to 900 t of NO₃/a mostly resulted from manure application.
 δ¹⁵N and δ¹⁸O signature of manure in
- 6¹⁵N and 6¹⁸O signature of manure in river can be distinguished from human sewage.


ARTICLE INFO

Article history: Received 20 August 2021 Received in revised form 12 November 2021 Accepted 12 November 2021 Available online xxxx

Editor: José Virgílio Cruz

Keywords: High-resolution monitoring Spatiotemporal variation Non-point sources Stable isotope analysis Climate change

GRAPHICAL ABSTRACT

ABSTRACT

Medium-sized rivers, which are used for intensive agriculture and urban infrastructure, are subject to manifold hydrochemical stressors. Identifying and monitoring these stressors is important for river basin management and a functioning ecosystem. To understand the spatiotemporal variation of surface water quality in a highly modified $lowland\ river, the\ M\"unstersche\ Aa\ River\ (Northwestern\ Germany)\ with\ 62\%\ of\ land\ used\ for\ agriculture\ and\ 26\%$ urban/residential area, was exemplarily studied. A total of 519 samples were collected using two automated high-frequency samplers and five catchment-wide sampling campaigns. They covered the five-year period 2015–2020 and included two extremely dry summers. The Münstersche Aa catchment is dominated by low permeable strata resulting in surface water runoff (Baseflow Index: 0.41) which leads to a high amplitude of discharge variation (mean discharge: 0.7 m³/s) with high flow conditions in winter/spring, and low discharge during summer/ fall. In wintertime, maximum nitrate concentrations (up to 73 mg NO_3 L) and loads (up to 1300 t NO_3 /a; up to 98% in winter) correlate with high-flow conditions. $\delta^{18}O$ and $\delta^{15}N$ isotopic analysis indicated manure from farmland as the major source of nitrate whereas the impact of municipal wastewater treatment plants was neglectable. Increased nitrate concentrations are linked to the higher proportion of farmland in the upper catchment (77%) compared with the lower catchment (47%). In summertime, at extremely low flow conditions, surface water consisted of up to 100% of treated wastewater, resulting in the highest measured chloride, sodium and potassium concentrations. The river is impacted by strongly seasonal and different stressors, which can be expected to intensify with ongoing climate change. Results from this study may help to adapt monitoring schemes for the Münstersche Aa but also for other lowland streams with comparable land-use targeting the goals of the Water Framework Directive. © 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.scitotenv.2021.151730 0048-9697/© 2021 Published by Elsevier B.V.

 $Please\ cite\ this\ article\ as;\ J.\ Buss\ and\ C.\ Achten,\ Spatiotemporal\ variations\ of\ surface\ water\ quality\ in\ a\ medium-sized\ river\ catchment\ (Northwestern\ G...,\ Science\ of\ the\ Total\ Environment,\ https://doi.org/10.1016/j.scitotenv.2021.151730$

^{*} Corresponding author.

E-mail address: achten@uni-muenster.de (C. Achten).

Anhang 18: Abstract digitaler Tagungsband Wasser 2020; erhältlich unter:

https://www.wasserchemischegesellschaft.de/images/pdf_veranstaltungen/2020/Wasserchemische_Gesellschaft_Tagungsband_Wasser_2020_s.pdf

Ge/Sp 011

Arzneimittel und Pestizide in der Münsterschen Aa – Abhängigkeit der Stoffeinträge von jahreszeitlichen Abflussschwankungen

J. Buss, Münster/D, C. Achten, Münster/D

Johanna Buss, Universität Münster, Institut für Geologie und Paläontologie – Angewandte Geologie, Corrensstraße 24, 48149 Münster/D E-Mail: johannabuss@uni-muenster.de

1. Finleitung

Die Münstersche Aa zählt mit ihrem Einzugsgebiet (EZG) von 172 km² zu den erheblich veränderten Fließgewässern (HMBW) und erreicht, wie viele Tieflandbäche in NRW, nicht das "gute ökologische Potenzial", welches in der Wasserrahmenrichtlinie (WRRL) gefordert wird [1]. Kennzeichnend für das EZG ist der heterogene Verlauf der Münsterschen Aa mit gering durchlässigem Untergrund (Grundmoräne) und einem stark landwirtschaftlich geprägten Oberlauf, in dem auch viele private Kleinkläranlagen liegen, einem Staubereich (Aasee), einer stark urban geprägten Fließstrecke (Stadtgebiet) sowie einem durch geklärtes Abwasser aus der Hauptkläranlage Münster beeinflussten Unterlauf (Rieselfelder, gut durchlässiger, sandiger Untergrund). Diese Charakteristik bietet eine Vielzahl von Eintragsmöglichkeiten für anthropogene Spurenstoffe, wie Pestizide, Biozide und Arzneimittel. Die Auswirkungen der Spurenstoffe auf aquatische Organismen sind dabei durch die Vielzahl von Einzelsubstanzen sehr komplex und bisher nur wenig erforscht [2] [3]. Derzeit werden durch die WRRL Pestizide und Biozide reguliert, während Arzneimittel, die in herkömmlichen Kläranlagen meist nur unzureichend entfernt werden, keinem Monitoring zugrunde liegen [4].

Übergeordnete Ziele des Projektes sind die Ableitung eines Entscheidungsunterstützungssytem für die Umsetzungspraxis der WRRL und die Entwicklung eines passgenauen Monitoringsystems für Trends in der Gewässerentwicklung von erheblich veränderten Tieflandgewässern. Ein weiteres Ziel ist die Identifizierung von möglichen Zusammenhängen zwischen stofflichen und ökologischen Parametern bei detaillierten Vor-Ort-Kenntnissen. Hierfür wird eine räumlich und zeitlich hoch aufgelöste Charakterisierung von anorganischen und organischen Stoffen im EZG der Münsterschen Aa durchgeführt. Stichtagsprobenahmen im gesamten EZG sowie Wochenmischproben aus dem oberen und unteren EZG werden über einen Zeitraum von mehreren Jahren inklusive der saisonalen hydrologischen Abflussschwankungen untersucht. In einem weiteren Teilprojekt werden ergänzende ökologische Untersuchungen der Fischbestände und des Makrozoobenthos durchgeführt.

Anhang 19: Artikel in Wissen Leben

04 FORSCHUNG&PRAXIS

November 2020

GEMELDET

Ausbreitungen von Infektionen verstehen

Infektionen verstehen

Physiker haben ein Modell zur Ausbretung von Krankhetten entwickelt, um die Wichungen von Maßahmen zur Eindammung von COVID-19 zu stesten – etwa Gedichtsmasken, Gebüde-Schließungen oder "Social Distancing," Die Arbeitsguppe von Pre Dr. Praphael Witzkowski beschäftigt alch mit Statistischer Physik der Beschreibung von Systemen, die aus sich vielen Teilchen bestehen. Dabei nutzen die Physiker die dynamische Dichtefunktionshiheotei (IDDFT), welche die Beschreibung von wechselwitzhenden Teilchen ermöglicht "Menschen die Social Distancing betreiben, kann mas nich wie gegenseitig abstoßende Teilchen vorstellen, well sie zu Beschreibung die Sichen die Social Distancing betreiben, kann mas nich wie gegenseitig abstoßende Teilchen vorstellen, well sie zu Beschreibung die Siche elektrische Lading die Frankeit michael to Yung. Basistend sie die Sich die Vingt. Basistend sie die Sich die Vingt. Basistend sie die Proposition vor die Vingt. Basistend und die Sich die Vingt. Basistend und die Proposition vor die Vingt. Basistend und die

Laien helfen häufig bei Bränden

Bränden

Bet Besinden muss die Feuerwehr in Bacht bis 15 Minuten den Einsatzort erteichen. Deshalb ist das Eingestfen von Laien bis dahin oft entscheidend. Aber Gennen Laien ohne Feuerwehnstubildung einen Brand löschen? Dieser Frage iss jetzt estmals ein Fescherteran um Prof. Dr. Meinald Thleitch von der Arbeitseinheit Organisations umd Wirtschaftspsychologie der WWU nachgegangen. Die Psychologen untersuchten das hypochetische Verhalten der Einepressenen mihilfe von Fragebögen und einem Brandwesuch, bei dem die Tellnehmer ein bernendes Küssen vorfanden. 95 Prozent der 64 Testpersonen unternahmen einen Löschvessuch. Dabet unterliefen ihnen einige Fehler. Tiotzdem gelang es fisst allen das Feuer zu löschen. Eine der Schlustofigerungen lautet, dass es regelmäßige Schulungen für Lalen mit einer präktischen Übung geben sollte. Ergonomiza DOI: 10.1080/0014/0139. 2020.1825824

Fische unter Strom

Tierbestände kartieren, Pestizide erfassen: Gewässerökologen untersuchen den Zustand der münsterschen Aa

menspiel des chemischen und ökologischen Zustandes bewerten", sagt Landschaftsökologie-Student Michel Hare. Heute haben wir auf einer Strecke von 400 Metern mehr als 500 Fliche gefangen – darunter vypische Arten für noeddeutsche Tieflandbische, zu der such die Aa gehört, wie etwa Rotsuig und Hasel. Wir haben aber auch Bitteiling und Groppen gefunden. Diese Arten sind eher selten für die Au und stehen unter Naturschutz", ergönat Kommilitonin Sam Lucy Behle.

"Die Ergebnisse helfen bei der Entwicklung eines Entscheidung-Unterstütungssystens auf Elmungsebietsehene für die Wasserpolitik. Dazu gehört ein integlertes Konzept mit passgenauen Maßnahmen zum Schutz und aus Bewirtschaffung der Aa und ihren Nebenfüssen", sagt Tillmann Butschardt, Leiter der Arbeitsgruppe Angewandte Landschaftsökologie und Okologische Planung. Bereits Mitte der 1980er Jahre machten Experten sich erstmals Gedanken zur Benaturierung von Pfleßgewässen. Doch erst mit dem Inkraftreten der Europäischen Wasserrahmentschlinie (WRRL) im Jahr 2000 wurde ein rechulicher Rahmen für die Wasserpolitik geschaffen. Für die Aa als "künntlicher und erheblich weränderter Wasserköten.

per" bedeutet das, dass bis zum Jahr 2027 das "gute ökologische Potenzial" erteicht werden muss.

Dieses Ziel ist nach Einschätzung der Wüssenschafter in den kommenden sieben Jahren nur seht schwer – wenn nicht und meglich – zu erteichen. Steffliche Einträge, etwa Stuckstoff und Photophot, belasten regelmäßig die Gewässer im Einzugsgebiet der An Zudem weisen wiele Gewässer im Einzugsgebiet des zu führen, dass verschiedene Arten der fließgewässertyptechen Lebensgemeinschaften nicht die erforderlichen Bedmugungen für eine dauerhafte Bestedlung wofinden.

"Der Druck steigt, Gewässer wieder in ihre naturnahen Zustände zu überführen, um die Ziele der WRRL zu erreichen", lat sich Garten Bohn von der Arbeitsgemeinschaften den Protisparten Worten der Westfalm-Lippe und Pretisparten für der Verständer Westfalm-Lippe und Pretisparten für heit die eine "Die Interessen zwischen Neuer in der Verschaftl, Landwirtschaft und Hochwasserchutz sind nicht leicht in Einklang zu bringen – vor allem das agrageptige Münsterland ist wirtschaftlich auf der der Verschaftlich und Hochwasserchutz sind nicht leicht in Einklang zu bringen – vor allem das agrageptige Münsterland ist wirtschaftlich und Hochwasserchutz sind nicht leicht in Einklang zu bringen – vor allem das agrageptige der Butzechaftlich und Hotschaftlich und hende der Biotopwenerzung, weiches das Oberleben von There und Pflanzenten sichert", segt Carsten Bohn.

Wie das aussehen kann, zeigt der renaturette Gewisser-Abschnitz entlang der Westerholuschen Wiese in der Nähe des Westerholuschen Wiese in der Nähe des Westerholuschen wirden den Einem kurvenzeiten Bachbett. Klesschüturungen, Sandbänken Hotten den Lebewesen dort als gewässertysische Habitate. Wie sich diese Maßnahmen mittel- und langfristig ur Fischpopulationen, Wässergualtist und Hotchwassenchutz auswirken, können die Erperten jedoch ertst nehingen Jahren beant-worten.

Gestörtes Fluchtverhalten

There – darunter Insekten und Fliche – Strangien entwickelt, Informationen über Bedrohungen an hire Artgenössen zu übermitteln. Die Informationen über bedrohungen an hire Artgenössen zu übermitteln. Die kollektive Rasiktion sichert ihr Überleben – kann jedoch durch spezielle Parasiten manipuliert werden. Wissenschafter der WWU finden heraus, dass infüziere Flüche die Übertragung des Fluchverbalkens absten. Proceedings of the Royal Society DOI: 10.1098/spb. 2020.1158

Welchen Effekt hat das Wetter aufs Radfahren?

Studie weist regionale Unterschiede beim Radverkehrsaufkommen nach

Studie weist regionale Unters

Hand aufs Herz: Fahren Sie auch bei Regen Fahrrad, oder sind Sie ein Schomwetzer-Radier Wirschaffs-wissenschaftlet der WWU haben herzungefunden, dass Münsternerinnen und Münsteraner auch bei schliechtem Wetter viel öfter das Rad nutzen als Menschen in anderen deutschen Südern. In einer vergleichenden Studie von 30 Stüdern in Deutschland analysierens sie estsmäss die Verhaltensweisen der Radfährer bei ungünstigen Wetterbedingungen wie zum Betapiel Regen, staßem Wind oder extremen Temperaturen. Mit den Daten von 122 ausomatisterten Fahrrad-Zähltstutionen in den Südden und einem Schlechwetter-Indies, der sich aus Luftemperatur. Niederschlag, Windgeschwindigkett, relativer Luffeuchtigkeit und Bewölkung zusammensetzt, berechneten die Wissenschaftler studipseifische Wetter-Elastitäten – eine Art lösaler metocologischer Bequemlichkeitsfaktor – des Radweichensunfkommens.

Der Fokus der Untersuchung liegt vor allem auf dem Pendelwerkehr zur Arbeits, Schule oder Universität. "Unsere Ergebnisse zeigen, dass die Wetter-Elastitäten "wissehen den Süden erheblich variiseen. Süder wie Münster, Oldenburg und Göttingen sind in Sachen Radverkehra gut aufgestellt und verfügen schon seit vielen Jahren über ein sausgebautes Verkehrswegenen, Parkmög-

verkehrs und die Staubelastung in den Städ-

ten.
Der Allgemeine Deutsche Fahrrad-Club
e-V. (ADFC) plädiert für einen Ausbau der
Radverkehrsinfrastruktur. "Damit das Radfähren bei jedem Wetter Freude macht und

sicher ist, muss die Infrastruktur in den Städens weiter ausgebaut und zu zusammenhängenden Netzen werbunden werden – zum Betapiel durch geschützte Radsqutzen, Radschnellwege, Ehrbradtursßen und genügend Radstellplätze. Die Studie der Universität Münster zeitgt deutlich, dass auch die Qualität er Radsverkehntnifnsatruktur das Radserkehntnifnsatruktur das Radserkehntnifnsatruktur das Radsverkehntnifnsatruktur das Radsverkehntnifnsatruktur das Belst bei schlechtem Wetter", sagt ADPC-Bundesgeschäftsführer Burkhard Stook.

Bundesgeschäftsführer Burkhard Stock Künftig erhoffen sich die Wissenschaftler, dass der Wetter-Elastziatis-Index für wettere Sädete berechnet wird, da immer mehr Städe automatisierte Fahrard-Zähltstationen zur Verkehrsanalyse einsetzen. "Eine größere Stichprobe erlaubt uns verlässtichere Aussagen über die Zusammenhänge des Wetters und des Radveckehraußkommens zu treffen. Darüber hinaus könnte eine Analyse der Wetterelastziatisten über Südet in verschiedenen Ländern hinweg zusstüllche Erkenntnisse über das Verhalten von Radzhetern und der Entstehung lokaler oder nationaler Fahrzsdkulturen liefern", fügt Jan Wessel ausbilchend hitzu.