Konzeption eines DBU-Projektes zur Renaturierung von Kiefernreinbeständen
Impressum

Titel:

Konzeption eines DBU-Projektes zur Renaturierung von Kiefernreinbeständen

Arbeitsgruppe:
Prof. S. Wagner, Dr. F. Huth, Dr. H. Fischer
Technische Universität Dresden
Lehrstuhl für Waldbau
Piener Str. 8
DE-01737 Tharandt
Email: waldbau@forst.ti-dresden.de

Dr. U. Hagemann
WALDKONZEPTE PartG
Lindenstr. 55
DE-15377 Buckow
Email u.hagemann@waldkonzepte.de

Projektlaufzeit und Projekt-Nr. bei der DBU:

01.04.2012 - 30.09.2013
AZ 30108-33/0

Homepage der DBU: http://www.dbu.de/projekt_30108/_db_1036.html
Inhaltsverzeichnis
0 Zusammenfassung ... 6
1 Motivation und Relevanz ... 8
2 Stand der Forschung ... 10
 2.1 Waldrenaturierungsforshung ... 10
 2.2 Referenzsystem(e) und Waldentwicklungsszenarien in Kiefernwäldern 18
 2.3 Ableitung relevanter Renaturierungsmaßnahmen und Entwicklungsszenarien 29
 2.3.1 Einzelbaum- bis truppweise Entnahme von Altbäumen und Totholzerzeugung ... 31
 2.3.2 Windwurf- und Windbruchsimulation .. 35
 2.3.3 Waldbrand ... 36
 2.3.4 Hiebsmaßnahmen im Altbestand und Voranbau mit Buche und Eiche 39
 2.3.5 Kontrollvariante .. 41
 2.4 Ableitung möglicher Entwicklungsszenarien .. 42
 2.5 Großexperimente, Minimumareale und zeitliche Betrachtungseinheiten 48
3 Forschungsziele und Hypothesen ... 50
 3.1 Priorisierte Zielstellungen ... 50
 3.2 Wissenschaftliche Hypothesen .. 51
4 Versuchsdesign .. 55
 4.1 Terminologien des Großexperiments ... 55
 4.2 Versuchsvarianten (Behandlungen) .. 56
 4.2.1 Variante A: Einzelbaum- bis trupp. Entnahme des Oberstands und Totholzerzeugung ... 56
 4.2.2 Variante B: Simulation von Windwurf und Windbruch .. 56
 4.2.3 Variante C: Flächige Auflichtung des Oberstands und Pflanzung 57
 4.2.4 Variante D: unbehandelte Kontrolle ... 57
 4.2.5 Teilbehandlung: Gezäunte und ungezäunte Teilflächen 57
 4.3 Randliniengradient (Versuchsblöcke) ... 57
 4.4 Zeitlicher Horizont des Großexperiments ... 61
 4.4.1 Phasen der Versuchsdurchführung .. 61
 4.4.2 Zeitliche Staffelung der Versuchsmanlage .. 63
 4.5 Indikatoren, Messgrößen & Parameter .. 63
 4.6 Statistische Grundprinzipien, Auswertungsansätze und Stichprobendesign 67
 4.6.1 Statistische Grundprinzipien .. 67
 4.6.2 Auswertungsansätze .. 68
 4.6.3 Stichprobendesign ... 69
5 Koordination und Verwaltung des Großexperiments .. 73
 5.1 Empfehlungen zur Projektstruktur .. 73
 5.2 Versuchsflächenmanagement: Räumliche und zeitliche Leitplanung 74
 5.3 Literatur- und Publikationsmanagement .. 76
 5.3.1 Grundlagen der Literaturdatenbank .. 76
 5.3.2 Recherchemöglichkeiten innerhalb der Literaturdatenbank 83
 5.4 Datenmanagement .. 85

6 Versuchsflächenauswahl ... 87
 6.1 Auswahl der Lokalitäten ... 87
 6.2 Kriterien für die Versuchsflächenauswahl .. 88
 6.3 Prozess der Versuchsflächenauswahl ... 90
 6.4 Potenziell geeignete Versuchsflächen ... 90

7 Kooperationen, Partner, Netzwerke und Öffentlichkeitsarbeit 92
 7.1 Einbindung und Vernetzung von Akteuren ... 92
 7.2 Organisation und Finanzierung ... 93
 7.3 Transparente Projektdokumentation und Organisationsstruktur 95
 7.4 Öffentlichkeitsarbeit ... 96
 7.5 Öffentlichkeitsarbeit im Projekt RenaKi .. 98

8 Kalkulation des Finanzierungsbedarfs für das vorgestellte Großexperiment 100
 8.1 Allgemeines .. 100
 8.2 Personalkosten .. 101
 8.2.1 Projektkoordination ... 101
 8.2.2 Technisches und wissenschaftliches Personal ... 101
 8.3 Sachkosten und Aufwendungen .. 101
 8.3.1 Waldstrukturdatenerhebung ... 101
 8.3.2 Verjüngung, Streu- und Samenfall ... 102
 8.3.3 Holzeinschlag ... 103
 8.3.4 Pflanzung .. 103
 8.3.5 Sturmwurfsimulation .. 104
 8.3.6 Zaunbau .. 104
 8.3.7 Weitere Sachkosten ... 105

9 Referenzen .. 106

10 Glossar ... 131

11 Anhang .. 149
11.1 Detailkarten ..149
11.2 Indikatoren-Steckbrief Beispiel I: Totholz ...151
11.3 Indikatoren-Steckbrief Beispiel II: Feinwurzeln ...153
11.4 RenaKi-Publikationen ...155
0 Zusammenfassung

In der Nationalen Biodiversitätsstrategie wurde von der Bundesregierung das Ziel formuliert, 5 % der Waldfläche in Deutschland bis 2020 einer natürlichen Entwicklung zu überlassen. Dieses ambitionierte Ziel wird deutschlandweit zurzeit noch um etwa 200.000 ha verfehlt. Trotz beharrlicher und intensiver Suche nach naturnahen Flächen in den letzten Jahrzehnten erscheint es illusorisch, in dieser Größenordnung weitere Waldflächen zu finden, die dem hohen Anspruch an Naturnähe entsprechen.

Dieser Bericht soll es der DBU-Naturerbe GmbH ermöglichen, die Realisierbarkeit eines Großprojektes zu diesem Thema auf ihren Flächen zu beurteilen.

Die im Bericht entwickelten wissenschaftlichen Hypothesen gehen von den Vorzügen (i.S. rascher Renaturierung auf Prozess- und Zustandsebene) eines Sets unterschiedlich starker Initialmaßnahmen aus, welche die Waldentwicklung sprunghaft in sukzessional deutlich voneinander isolierte Stadien befördert. Weiterhin wird angenommen, dass eine größere Komplexität der Waldstruktur – gemessen an der Randlinienlänge zwischen verschiedenen Waldstadien – die Renaturierung auf der Mesoskala beschleunigt und verstetigt.

Die Prüfung dieser Hypothesen setzt ein konsequentes Versuchsdesign voraus, das auf eine statistisch fehlerfreie Analyse abgestimmt wurde. Lineare gemischte Modelle, Punktprozessstatistik und Strukturgleichungsmodelle sind maßgebende und effektive Werkzeuge, die derartige Analysen ermöglichen, mehr noch: voraussetzen.

Die im Rahmen des Projekts durchgeführte Suche nach geeigneten und für die oben beschriebenen mitteleuropäischen Kiefernforste repräsentativen Flächen, die den projektspezifischen An-
forderungen an Homogenität, räumliche Unabhängigkeit und Mindestgröße genügen, erbrachte in vier Lokalitäten (= Liegenschaften der DBU-Naturerbe GmbH) potentielle Versuchsflächen: „Rüthnicker Heide“ (Brandenburg, 4 x 50 ha), „Weißhaus“ (Brandenburg, 4 x 50 ha), „Zschornoer Wald“ (Brandenburg/Sachsen, 2 x 50 ha) und „Ückermünder Heide“ (Mecklenburg-Vorpommern, 3 x 50 ha und 1 x 42 ha).

Vorgeschlagen wird nun ein Vorhaben auf insgesamt 640 ha Waldfläche, verteilt auf jene 4 Lokalitäten und dort je 4 räumlich getrennten Versuchsblöcken (à 40 ha). Das Experiment sieht 4 verschiedene Behandlungen des Waldes (einschließlich einer Kontrollvariante) vor und adressiert explizit die Bedeutung der Strukturen im Waldökosystem auf der Mesoskala (und damit die β-Diversität).

Die für ein derartiges Großprojekt erforderliche Logistik wird in dem Projektbericht ebenfalls aufgezeigt, darunter Empfehlungen zur Projektstruktur, Strategien einer räumlichen und zeitlichen Leitplanung sowie Hinweise zum Datenmanagement. Es kann z.B. gezeigt werden, dass die Verteilung der Versuchsflächenanlagen über 4 Jahre nicht nur logistisch vorteilhaft, sondern aus wissenschaftlicher Sicht sogar zu fordern ist.

Es werden mögliche Kooperationen, Partner und Netzwerke benannt. Außerdem wird die Bedeutung der spezifischen Öffentlichkeitsarbeit herausgestellt. Die Kernaussagen gründen sich insbesondere auf den Erfahrungsschatz weltweit laufender Großprojekte (USA, Skandinavien). Die Möglichkeiten einer Kofinanzierung durch bundesdeutsche Stellen (BfN), die EU (EU-Life) sowie Stiftungen werden dargelegt.

Im Zuge der Realisierung dieses Großprojekts könnte die DBU länderübergreifend zu einer Anlaufstelle für Waldrenaturierungsforshung und -praxis werden, die auch über die Bundesrepublik hinaus ein Wissensportal aufbauen kann. Als ein erster Schritt in diese Richtung ist innerhalb des Projekts „RenaKi“ eine Literaturdatenbank erstellt worden, die einen thematischen Einstieg in die drei wesentlichen Teilbereiche „Kiefernwälder“, „Großexperimente“ und „Renaturierung“ ermöglicht. Die Datenbank liefert Verknüpfungen zwischen den Teilbereichen mit Blick auf Interdisziplinarität über Schlüsselbegriffe und/oder „Mischkategorien“. Sie ermöglicht die Recherche bis hin zu differenzierten Detailangaben über eine Hierarchie der Schlüsselbegriffe, ist vergleichsweise leicht zu handhaben und gibt einen aktuellen und fundierten Überblick zu lokaler und internationaler Fachliteratur.
1 Motivation und Relevanz

Flächenbedarf „natürliche Waldentwicklung“

Im Abgleich mit den in Deutschland vorhandenen Waldflächen ist der Flächenanteil mit der o.g. Kombination der Kriterien nun bereits deutlich „ausgedünnt“. Zusätzliche 200.000 ha mit dieser Maßgabe zu finden muss daher illusorisch erscheinen. Die Konflikte um diese Flächen zwischen Waldeigentümern und Naturschutz sind mit Händen zu greifen.

Gemessen an Naturschutzzielen müssen darüber hinaus Defizite für bisher vorhandene Flächen mit natürlicher Waldentwicklung konstatiert werden: (i) Die **Naturdynamik in jüngeren Beständen ist**

Flächenvorrat der DBU-Naturerbe GmbH

Waldumbau ist als menschliche Handlung zielorientiert; Aspekte der Wirtschaftlichkeit sind dabei wichtig. Die Erwartungen an den Waldumbau sind hoch, und der Mitteleinsatz wird in jedem Fall einer kritischen Bewertung standhalten müssen. Die Herausforderung, Waldflächen - als bisher kultiviertes Land - in Wildnis nicht nur zurückzuführen, sondern eben dieses über die Wiedereinführung natürlicher Prozesse zu erreichen, ist ambitioniert und die methodischen Details zur Erreichung dieses Zieles sind keineswegs geklärt. Es gibt derzeit so gut wie keine systematischen Untersuchungen, die die hier neu aufgeworfenen Fragen beantworten könnten. Ein „klassischer“ Waldumbau, wie er innerhalb des Wirtschaftswaldes („integrierte Renaturierung“) landesweit und großflächig praktiziert wird, unterscheidet sich in der Zielsetzung erheblich im Vergleich zum „Waldumbau zu Wildnis“. Die folgende kurze Liste mag einen ersten Eindruck der Ziele vermitteln, die hier verfolgt werden, für deren Zielerreichung aber noch vielfach Wege gesucht werden müssen:

- „Old-Growthness“:
 Anreicherung von Totholz, Erhöhung des Anteils von Bäumen größerer Dimension, Bäume mit Verletzungen, Bäume mit besonderen Kronen- oder Stammformen
- „Komplexität“:
 Ungleichaltrigkeit, Vollständigkeit der Stadien der Sukzession und Phasen der Fluktuation, räumliche Lagerung der Phasen (innere Randlinien), Naturnähe des Störungsregimes

Das einzig bisher bekannt gewordenen „Verfahren“, mit denen Wälder in der Praxis zu Wildnis überführt werden, ist die sofortige Einstellung jeglicher Maßnahmen im Sinne eines „Prozess-

Für experimentelle Forschung in größerem Umfang ist in den Nationalparks kein Raum; erstens stehen in den Kernzonen rechtliche Beschränkungen entgegen und zweitens werden die Nationalparkflächen allgemein als aus Naturschutz-Perspektive so hochwertig angesehen, dass Eingriffe in die Wälder möglichst konsequent vermieden werden sollen.

Auf diese Weise könnten Beispielflächen geschaffen werden, die auch für andere Flächeneigentümer interessant wären. Die Konflikte zwischen Naturschutz und Forstwirtschaft würden entschärft, weil bei der Festlegung für oder wider von NBS-Flächen erheblich mehr Flexibilität gegeben wäre.

2 Stand der Forschung
2.1 Waldrenaturierungsforschung

Die nachfolgende Grafik (Abb. 2) verdeutlicht bereits, dass absolut unbeeinflusste Ökosysteme, d. h. Ur- und Primärwälder in diesem Sinne im europäischen Raum nur sehr selten oder gar nicht mehr vorhanden sind. Es können jedoch Abstufungen hinsichtlich der Intensität der menschlichen Einflussnahme (Hemerobiegrad) auf das Ökosystem unterschieden werden, deren Übergänge allerdings fließend sind.

Abb. 2.
Schamatische Darstellung der Ökosystemveränderung (aus: VAN ANDEL & ARONSON 2012, S.6)

Für die Renaturierung von Waldökosystemen gilt daher häufig, dass viele Renaturierungsmaßnahmen meist ausschließlich auf die Herstellung oder den Erhalt eines bestimmten Waldzustandes innerhalb der Sukzessionsabfolge ausgerichtet sind. Dieser „konstruierte“ Waldzustand ist i.d.R. durch Strukturen und Strukturelemente charakterisiert, die für ausgewählte Ziel- oder Schlüsselarten als besonders vorteilhaft gelten. Die Society for Ecological Restoration (SER 2004) fasst den Begriff der Ökosystemrenaturierung als „the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed“ (S. 3) zusammen.

Anhand der angeführten Definitionen wird bereits ersichtlich, wie weit die aktuellen Begriffe in ihrer Bedeutung und folglich auch in ihrer Anwendung gefasst werden. Als besonders problematisch für
die Formulierung einheitlicher Renaturierungsziele für Waldökosysteme erweisen sich folgende Punkte:

- Waldökosysteme sind stark durch **standörtliche Gegebenheiten** geprägt, die sich wiederum aus einer Kaskade an räumlich relevanten Einflussfaktoren (global, regional, lokal) zusammensetzen.
- Der aktuelle Zustand (z.B. Struktur und Artenzusammensetzung) von Waldökosystemen ist nicht statisch, sondern stets sukzessionalen Prozessen unterworfen. Die Dauer eines Systemzustands (z.B. Klimax-Stadium) hängt nicht nur von zustandsspezifischen Eigenschaften (Baumarten- und Altersstruktur) sondern auch erheblich vom Störungsregime und äußeren Einflussfaktoren ab.
- Aufgrund der außerordentlichen **Komplexität von Waldökosystemen** (= komplexe Prozesse, Interaktionen, Strukturen, räumliche und zeitliche Skalen) wirken Renaturierungsmaßnahmen meist nur auf einige Teilaspekte, und oft können die Folgen für unterschiedliche Systemkomponenten nie vollständig offengelegt werden.
- Die Formulierung eines konkreten **Zielzustands**, der mehr oder weniger dem Bild von Naturnähe gerecht wird, ist sehr stark von den **gewählten Referenzsystemen** abhängig (siehe Folgeabschnitt 1.2). Die Eignung dieser historisch begründeten Referenzsysteme wird angesichts der Herausforderungen des Klimawandels gegenwärtig besonders kritisch diskutiert.
- Die grundsätzlich **sehr hohe gesellschaftliche und politische Einflussnahme** auf die Waldbehandlung und folglich auch auf die Waldrenaturierung erzeugt ein vielgestaltiges Spektrum an politischen, sozialen, kulturellen und ökonomischen Abhängigkeiten und Ansprüchen. Das Herstellen von Naturnähe, Wildnis oder Schutzzonen erweist sich dabei lediglich als ein Teilaspekt vieler Handlungsoptionen.

Abb. 3.
Gesteigerte Diversität in Flora und Fauna nach spezifischen Renaturierungsmaßnahmen auf Pinus ponderosa Flächen um Flagstaff/ Arizona (Fotos: HUTH; HAGEMANN 2012)

Begrifflichkeiten auch in ihrer Verwendung durch europäische Akteure auf ihre Bedeutung für das Waldökosystem hin zu prüfen (z. B. „reclamation“ und „afforestation“).

wertvoller und hochkomplexer Waldökosysteme betroffenen sind, verdichten sich die Bestrebungen zur Entwicklung von Renaturierungsmaßnahmen und die Bemühungen zur wissenschaftlichen Dokumentation der Renaturierungserfolge (HOLL 2013). Als grundsätzliche Strategien zur Renaturierung gelten auch in tropischen Wäldern: a) die Vernetzung noch vorhandener Reliktvorkommen ursprünglicher Waldgebiete, b) die Verbesserung der landwirtschaftlichen Produktivität auf geeigneten Standorten, um Waldbäume zu entlasten, und c) die Überführung jener Waldbäume, die mit Monokulturen (z.B. Pinus, Eucalyptus, Acacia) aufgeforstet wurden, in naturnahere Waldökosysteme (LAMB et al. 2005). Die Tragweite großflächiger Waldvernichtung in diesen Regionen macht sich nicht nur am globalen CO₂-Haushalt fest, sondern vor allem am Verlust wichtiger Ökosystemdienstleistungen, die als Grundlage für die menschliche Existenz in diesen Gebieten anzusehen sind (z.B. Trinkwasser, Energie, Bodenschutz, Nahrung) und deren Bereitstellung erst durch diese Wälder garantiert wird (BÖRNER & VOSTI 2013).

Trotz aufwendiger Maßnahmen und komplexer Konzepte werden die gesetzten Renaturierungsziele nicht immer erreicht, sodass eine Modifikation oder Ausweitung der Maßnahmen erforderlich werden kann. Die Bewertung des Renaturierungserfolgs gestaltet sich oft als besonders schwierig, da theoretisch für nahezu alle Ökosystemkomponenten vor der Maßnahmenimplementierung geeignete

1. die Artenzusammensetzung,
2. die Präsenz einheimischer Arten,
3. die Präsenz funktionaler Gruppen als Grundlage für die Kontinuität des Ökosystems,
4. die durch Umweltbedingungen innerhalb des Ökosystems gewährleistete Reproduktionsfähigkeit der Populationen,
5. eine dem Entwicklungszustand des Ökosystems entsprechende Funktionalität,
6. die funktionale Integration des Ökosystems in übergeordnete räumliche Einheiten (z.B. auf der Landschaftsebene),
7. die Eindämmung äußerer Risikofaktoren bzw. negativer Einflussfaktoren,
8. die Resilienz des Ökosystems gegenüber normalen, periodischen Stressfaktoren,
9. eine dem Referenzsystem ähnliche Fähigkeit des Ökosystems zum vergleichbaren Selbstverhalten.

Folgende Kernpunkte zum Stand der begleitenden Waldrenaturierungsforschung lassen sich aus den vorgestellten Publikationen entnehmen:

- Renaturierungsforschung in komplexen Waldökosystemen bedarf eines kontinuierlichen Zusammenwirkens sowohl hoch spezialisierter Fachdisziplinen der ökologischen Forschung (z.B. Vegetationskunde, Zoologie, Genetik), als auch jener Disziplinen, die zu einer übergeordneten Betrachtung befähigt sind (z.B. Systemanalyse, Waldbau), um das gesamthetliche Zusammenwirken der ökologischen Teilprozesse beurteilen und analysieren zu können.
- Alle Teildisziplinen der Waldrenaturierungsforschung streben nach einer stetigen methodischen Weiterentwicklung, um die Qualität ihrer Messungen (Technik), Analysen (Indikatoren, Statistik) und daraus abgeleiteten Prognosen (Modellierung) zu verbessern. Dabei berücksichtigen sie die spezifischen Charakteristika von Waldökosystemen (z.B. hohe strukturelle Komplexität).
- Die prozessorientierte Waldrenaturierungsforschung stellt einen der bedeutendsten Forschungsschwerpunkte dar, um die innere und nach außen wirksame Dynamik des Waldökosystems abbilden zu können.
- Waldrenaturierungsforschung orientiert sich im Wesentlichen an den drei zeitlichen Ankerpunkten: (1) den historischen Informationen zum ursprünglichen Aufbau des Waldöko-systems,
(2) der Erfassung des aktuellen Waldzustands und (3) der Ableitung zukünftiger Waldentwicklungsszenarien.

- Die Dokumentation räumlicher Vernetzung und das Erfassen unterschiedlichster Interaktionen zwischen Wäldern und angrenzenden Ökosystemen (z.B. Gewässer, Offenland) oder urbanen Flächen ist ein wichtiger Bestandteil der Waldrenaturierungsforschung. Dies gilt auch für die Einbeziehung unterschiedlicher räumlicher Ebenen, um Renaturierungseffekte sichtbar machen und Defizite offenlegen zu können.
- Waldrenaturierungsforschung wird stark durch gesellschaftspolitische Entscheidungen beeinflusst. Deshalb ist eine kontinuierliche und transparente Öffentlichkeitsarbeit mit adäquater personeller und institutioneller Vernetzung notwendig, damit die Akteure der Waldrenaturierungsforschung in entsprechende gesellschaftliche Entscheidungsprozesse integriert werden. Zudem ist sicherzustellen, dass sich weder Renaturierungsforschung noch die spätere Umsetzung in Partikularinteressen erschöpft.

2.2 Referenzsystem(e) und Waldentwicklungsszenarien in Kiefernwäldern

Die Vorstellungen zur Renaturierung von stark anthropogen überprägten Wirtschaftswäldern (Monokulturen, Plantagen), die primär durch Kiefernarten dominiert sind, unterscheiden sich aufgrund unterschiedlicher (i) Zielformulierungen, (ii) Ausgangsbedingungen und (iii) Referenzsysteme oft erheblich. Abschnitt 1.1 hat bereits gezeigt, dass die angewendeten Waldrenaturierungsansätze in ihrer räumlichen und zeitlichen Dimension grundsätzlich sehr variabel sind und nicht zuletzt von den konkreten Zielformulierungen der Flächeneigentümer und den finanziellen Rahmenbedingungen abhängen (SCHULTZ et al. 2012). Hinsichtlich der Renaturierung von stark anthropogen überprägten kieferndominierten Wirtschaftswäldern beziehen sich die Zielformulierungen auf:

- eine Annäherung an die Strukturvielfalt natürlicher Systeme (Orientierung an Altersverteilungen, Störungsregime, Imitieren räumlicher Muster als Folge unterschiedlicher Sukzessions- und Entwicklungsstadien)
- die Etablierung konkreter Zielarten bzw. Artengruppen mit spezifischer Funktion in den natürlichen Systemen (z.B. Schirm- und/oder Schlüsselarten)
- die Förderung natürlicher (Teil-)Prozesse und Gewährleistung der Prozesskontinuität (z.B. Sukzession, Mineralisierung),
- die räumliche und zeitliche Vernetzung von Gebieten, Prozessen und Renaturierungsmaßnahmen

Je konkreter das Zielsystem anhand der genannten und beeinflussbaren Kenngrößen (Struktur, Arten, Prozesse) beschrieben werden kann, umso spezifischere Entwicklungsszenarien und Maßnahmen können abgeleitet werden (BAKKER et al. 2000, SER 2004). In der nachfolgenden tabellarischen Übersicht sind Ausgangszustände, Zielformulierungen und Maßnahmen mit Blick auf die Renaturierung weltweiter, großflächiger Kieferngebiete unterschiedlichen Ursprungs zusammengestellt.
Tab. 1.
Untersuchungen zum natürlichen Entwicklungspotenzial (Sukzessionspotenzial) armer Standorte mit Beteiligung der Kiefer (Pinus spec.) und unterschiedlich starker anthropogener Beeinflussung

<table>
<thead>
<tr>
<th>Gebiet (Pinus spec.)</th>
<th>Ausgangszustand [A] und Zielformulierung [Z]</th>
<th>Autoren</th>
</tr>
</thead>
</table>
| **Deutschland** | A: Unterschiedlich stark anthropogen überprägte Offenland- (Heiden, Weideflächen) und Waldgesellschaften (Kiefernforste, Mischwälder) auf ärmeren Standorten | ANDERS et al. 2002
HEINKEN 2007, 2008
LEUSCHNER 1994
MLUV 2005
FISCHER & FISCHER 2012
ZERBE 2002 |
| Gemeine Kiefer (P. sylvestris) | Z: Entsprechend der regionalen potenziellen natürlichen Vegetation (pnV) wird eine grundsätzliche Beteiligung der folgenden Baumarten angenommen, deren Anteile sich je nach Sukzessionssstadium, Standort und Sameneintrag unterscheiden: *Betula pendula*, *Pinus sylvestris*, *Quercus petraea*, *Quercus robur*, *Fagus sylvatica*, *Picea abies* (geringe Beteiligung von *Betula pubescens*, *Salix caprea*). | |
ERIKSSON et al. 2003
FRIES et al. 1997
HALLDORSSON 2012
HALME et al. 2013
KUUULUVAINEN 2002
SIMILÄ & JUNNINEN 2012
VANHA-MAJAMAA et al. 2007 |
GORIS et al. 2007
KINT 2003
KINT et al. 2004
LUST & GEUDENS 1998
LUST et al. 2000 |
| Belgien & Niederlande | Gemeine Kiefer (P. sylvestris) | A: Die großflächigen Kiefernreinbestände weisen teilweise starke Streuakkumulationen (Rohhumusaufflächen) auf, die in Kombination mit verdämmender Bodenvegetation Naturverjüngung erschweren.
Z: In Anlehnung an die pnV wird in weiten Teilen eine Umwandlung der Kiefernreinbestände in Eichen-Hainbuchen-Wälder angestrebt. Durch die Einbeziehung von Naturwaldrelikten in das Renaturierungskonzept kann die Migration naturnaher Arten gefördert werden. | CZEREPKO 2004
DZWONKO 2001 |
Z: Gemäß der „National Vegetation Classification“ erfolgte auch die Ausweisung natürlicher Kiefernwälder unter Beteiligung der Mischbaumarten *Quercus* spec. und *Betula* spec. Die Renaturierungsmaßnahmen in den zumeist mittelalten Kiefernreinbeständen umfassen die Förderung von Mischbaumarten, die Öffnung des geschlossenen Bestandesgefüges und die Anreicherung mit Totholz. Das initiierte Störungsregime ist an natürlichen Störungsszenarien, die durch Windwurf und Feuer verursacht sind, orientiert. | HARMER & KIEWITT 2005-2006
MASON 2000
THOMPSON et al. 2003 |
| Großbritannien | Gemeine Kiefer (P. sylvestris) |
Spanien

Monterey-Kiefer (P. radiata)
Gemeine Kiefer (P. sylvestris)
Aleppo-Kiefer (P. halepensis)
Kalabrische Kiefer (P. brutia)
See-Kiefer (P. pinaster)

A: Aufforstungsflächen mit homogenen, gleichaltrigen Kiefernplantagen sind in Spanien auf etwa 3,4 Millionen Hektar zu finden. Diese Kiefernwälder weisen zwar je nach Entwicklungsstadium und Bestandesdichte unterschiedlich hohe Artenzahlen in der Bodenvegetation auf, aber die Diversität ist geringer als in den durch Eiche oder Buche dominierten naturnahen Beständen. Charakteristische Naturwaldarten fehlen häufig, da sie durch andere Arten mit hoher Abundanz verdrängt werden. Unterschiedliche Renaturierungsszenarien ergeben sich durch das Vorkommen größerer Primärwaldfragmente oder kleinerer Inseln mit der natürlichen Baumartenzusammensetzung. In Gebieten mit geringer Wasserversorgung wirkt sich die hohe Stammzahl in jüngeren Kiefernbeständen negativ auf die Wasserverfügbarkeit für Verjüngungspflanzen und Begleitvegetation aus. Allein die Interzeptionsverluste im Kronendach liegen zwischen 15 % - 35 %.

Z: Die Primärwälder Spaniens sind je nach standörtlichen Gegebenheiten dominiert durch Eichen (Quercus robur, Quercus ilex, Quercus pyrenaica) oder Buchen (Fagus sylvatica) mit Beteiligung von Laubbäumen wie Acer opalus, Betula celtiberica, Castanea sativa, Crataegus monogyna, Frangula alnus, Fraxinus excelsior, Sorbus aria, Ulmus glabra oder Ulmus minor. Die Präsenz von Mischbaumarten in Kiefernbeständen ist sehr stark abhängig von der Präsenz der Ausbreitungsvektoren (Vogelarten). Die Effekte von Feuer als Renaturierungsmaßnahme werden kontrovers diskutiert.

Griechenland

Schwarz Kiefer (P. nigra)
Aleppo-Kiefer (P. halepensis)

A: Großflächig wirkende, intensive Feuer zerstören ganze Waldkomplexe. Daraus resultierende Erosionserscheinungen verhindern die Regeneration der Waldökosysteme. Ursache sind häufig zu starke Akkumulationen brennbaren Materials.

Z: Der Paradigmenwechsel in der Waldbewirtschaftung führt zur deutlich erweiterten Nachfrage an „Ecosystem Services“, die über die bisherige Reinbestandswirtschaft nur unzureichend abgedeckt werden. Der Umgang mit Flächen, die durch das Feuer vernichtet wurden, ist meist unklar. Primäre Zielsetzung ist die Entwicklung von Renaturierungsstrategien und Techniken (Pflanzungen, Einsatz von Schutzpflanzen etc.), die eine schnelle Wiederbewaldung mit naturnaher Baumartenkonstellation und Struktur gewährleisten.

Quellen:
- Gomez-Aparicio et al. 2009
- Maestre & Cortina 2004
- Montes & Cañellas 2003
- Onainda & Mixtelea 2009
- Onaindia et al. 2013
- Pausas et al. 2004
- Arianoutsou 2009
- Kakouros 2012
- Moreira 2011
- Spanos & Raftoyannis 2005
- Spanos et al. 2010
Kanada
Amerikanische Rot-Kiefer (P. resinosa)

A: Die Plantagen mit *P. resinosa* im Süden Kanadas umfassen eine Fläche von ca. 2 Millionen Hektar.

Z: Die Annäherung an eine natürliche Artenzusammensetzung und die Herstellung der entsprechenden Bestandesstrukturen werden über ein verändertes Durchforstungsregime erreicht, das sich am natürlichen Störungsregime orientiert. Die Einbringung der ursprünglichen Baumarten (*P. strobus, Qu. rubra, F. americana*) erfolgt durch Pflanzung und Saat.

USA
Nord Amerika
Gelb-Kiefer (P. ponderosa)
Jeffreys Kiefer (P. jeffreyi)
Zucker Kiefer (P. lambertiana)

A: Die großflächigen Kiefernreinbestände zur Holzproduktion weisen homogene Strukturen auf und weitaus höhere Stammzahlen als unter natürlichen Bedingungen vorzufinden wären.

Mittel- und Südamerika
(P. echinata)
Weihrauch-Kiefer (P. toeda)
Ostamerikanischer Hartkiefer (P. echinata var. caroliniana)
Zucker Kiefer (P. lambertiana)
Sumpf-Kiefer (P. palustris)

A: Seit Mitte des 19. Jahrhunderts erfolgte eine sukzessive Waldentwicklung auf ehemaligen Agrarflächen, aber auch die gezielte Förderung dicht bestockter, homogener Kiefernbestände. Durch eine besonders hohe Stammzahlichte wird eine kompakte Streuauflage ausgebildet, die eine Besiedlung durch Naturverjüngung und eine artenreiche Bodenvegetation verhindert. Zudem kommt es zu einer erheblichen Akkumulation brennbaren Materials, sodass sich die Gefahr von intensiven Großfeuern zusätzlich verstärkt, was vor allem Arten schädigt, die weniger an das Feuerregime adaptiert sind.

Z: Die Verbesserung der Ökosystemfunktion und die Erhöhung der Diversität sollen über ein Durchforstungsregime erfolgen, das sich am natürlichen Störungsregime orientiert. Im günstigsten Fall erfolgt ab einem Alter von 70-100 Jahren die natürliche Ablösung kiefern- und kieferdominierter Wälder durch ungleichaltrige Laubmischwälder (*Quercus* spec., *Carya* spec., *Prunus* spec.). Durch die Annäherung an den natürlichen Feuerzyklus wird auch die Naturverjüngung der Mischbaumarten gefördert.

BURNS & HONKALA 1990

PARKER et al. 2001, 2008

CHRISTENSEN & PEET 1984

FOX et al. 2007

FRIEDERICI (ed.) 2003

LARSON & CHURCHILL 2012

MEYER 2009

ROSSI et al. 2011
China
Korea-Kiefer (*P. koraiensis*)
Chinesische Kiefer (*P. tabulaeformis*)
Davids-Kiefer (*P. armandi*)

Chen et al. 2003
Liu et al. 2012
Ren et al. 2011
Yang et al. 2010, 2011
Zhang et al. 2010

Australien & Neuseeland
Monterey-Kiefer (*P. radiata*)

A: Der großflächige Anbau nichtheimischer Kiefern- und Eukalyptusarten führt zu deutlichen Veränderungen in der floristischen und faunistischen Artenausstattung. In den Kiefernplantagen fehlen insbesondere Kennarten von Naturwäldern.

Z: Die Renaturierungsmaßnahmen streben eine großräumige, mosaikartige Vernetzung von Naturwäldern an, sodass die Einwanderung von Arten in die Plantagen leichter möglich ist. Als wesentliche Einflussgrößen auf das Arteninventar von Kiefernplantagen gelten das Bestandesalter und der Kronenschlussgrad. Ältere Kiefernbestände weisen demzufolge ein größeres Renaturierungspotenzial auf.

Brockhoff et al. 2003
Langer et al. 2008
Lindemayer & Hobbs 2007
Maher 2009

- ökologische Beschreibungen und Artenlisten,
- Luftbilder und andere bildliche Dokumentationen,
- Pollen- und Holzkohleanalysen,
- Dendrochronologische Untersuchungen,
- Auswertung fossiler Fundstücke, Herbarien und Museumsarchive,
- historische Aufzeichnungen, Standorts- und Nutzungskarten.

![Diagramm der räumlichen und zeitlichen Gültigkeit der Methoden zur Konstruktion eines Referenzsystems](image)

Abb. 5. Darstellung der räumlichen und zeitlichen Gültigkeit der Methoden zur Konstruktion eines Referenzsystems

Insbesondere Bestandesstrukturdaten, wie sie für eine Umsetzung lokaler Renaturierungsmaßnahmen in Waldökosystemen notwendig sind, werden mit Hilfe der indirekten Methoden nur unzureichend geliefert. Je detaillierter die Renaturierungsziele formuliert werden, umso profonder sollten die Informationen zum jeweiligen Referenzsystem sein (SER 2004). Im mitteleuropäischen Raum geht die Rekonstruktion des natürlichen Referenzsystems meist mit der Ausweisung der sog. potenziellen natürlichen Vegetation (pnV) einher. Die pnV beschreibt den hypothetischen, natürlichen Zustand der Vegetation im betrachteten Areal, der sich unter den heutigen Umweltbedingungen und ohne menschliche Eingriffe „schlagartig“ einstellen würde (TÜXEN 1956). Wenngleich die Ausweisung der pnV ein anerkanntes methodisches Vorgehen darstellt, das vor allem für die Rekonstruktion der natürlichen floristischen Artenzusammensetzung als hilfreiches Leitbild dient, ist auch dieses Vorgehen aus den genannten Gründen nicht unumstritten (MATUSZKIEWICZ 1962,

![Abb. 6. Darstellung der ökologischen Stellung natürlicher Kiefernwälder in Mitteleuropa (aus: HEINKEN 2008)](image)

Aus diesen Beschreibungen und den Angaben von HOFMANN & POMMER (2005) für das nordost-deutsche Tiefland (Abb. 7) wird für die potenziellen Versuchsregionen (Liegenchaften) des geplanten Großexperiments ausgehend vom homogenen Kiefernforst folgende Abfolge der Waldentwicklungstypen, abgeleitet:

Die ausschließliche Orientierung an natürlichen, sukzessionsgesteuerten Prozessen sichert einerseits die Naturnähe der Systeme, erweist sich jedoch aus anthropozentrischer Sicht als langwierig und unkalkulierbar (MUCIna 2009). Darin liegt u.a. die Begründung für die gezielte Umsetzung von Renaturierungsmaßnahmen, die über das Zusammenspiel von ökologischen Kenntnissen und deren praktischer Anwendung eine Strukturierung und beschleunigte Entwicklung von Waldökosystemen ermöglichen. Bezogen auf die konkreten DBU-Naturerbe-Liegenschaften ergeben sich in Abhängigkeit von den gewählten Renaturierungsmaßnahmen, die in kieferndominierten Waldökosystemen
umsetzbar sind, unterschiedliche Szenarien. Diese Maßnahmen und die daraus resultierenden Entwicklungsszenarien sind Gegenstand des nachfolgenden Abschnitts 2.3.

2.3 Ableitung relevanter Renaturierungsmaßnahmen und Entwicklungsszenarien

<table>
<thead>
<tr>
<th>Tab. 2. Übersicht möglicher primärer und sekundärer Renaturierungsmaßnahmen in Waldökosystemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primäre Renaturierungsmaßnahmen</td>
</tr>
<tr>
<td>• Komplette Beräumung des Oberstandes</td>
</tr>
<tr>
<td>• Entnahme definierter Baumarten (Entmischung)</td>
</tr>
<tr>
<td>• Verwendung eines spezifischen Durchforstungs- und/oder Ernteregimes (Hiebsarten) zur Imitation des natürlichen Kronenschlusses und der Lückengrößenverteilungen (Störungen)</td>
</tr>
<tr>
<td>• Schaffung stehenden Totholzes (Ringeln, Kronensprengungen)</td>
</tr>
<tr>
<td>• Windwurfsimulation (Umwerfen, Abbrechen oder Anschieben von Bäumen)</td>
</tr>
<tr>
<td>• Kontrolliertes Abbrennen der Bestände über intensive Feuer (Kronenfeuer)</td>
</tr>
<tr>
<td>• Künstliches Anheben oder Absenken des Grundwasserspiegels</td>
</tr>
<tr>
<td>Sekundäre Renaturierungsmaßnahmen</td>
</tr>
<tr>
<td>• Künstliche Einbringung von Verjüngung über Saat, Pflanzung oder Verpflanzung von Wildlingen</td>
</tr>
<tr>
<td>• Mischungsregulierungen innerhalb der Baumartenverjüngung</td>
</tr>
<tr>
<td>• Anreicherung der Begleitvegetation mit sog. Schutzpflanzen zur Verbesserung der Etablierungsbedingungen für die „Zielarten“</td>
</tr>
<tr>
<td>• Bodenbearbeitung (Pflügen, Plaggen, Kultivieren) und Kalkung</td>
</tr>
<tr>
<td>• Mähen oder Beweidung zur Reduktion verjüngungshemmender Begleitvegetation</td>
</tr>
<tr>
<td>• Mulchen zur Anreicherung des Oberbodens mit organischem Material</td>
</tr>
<tr>
<td>• Applikation liegenden Totholzes</td>
</tr>
<tr>
<td>• Bodenfeuer zur Förderung der Verjüngungsetablierung und Entfernung verdämmender Begleitvegetation</td>
</tr>
</tbody>
</table>

Nach der Vorstellung potenziell möglicher Renaturierungsmaßnahmen in unterschiedlichen Waldökosystemen stellt sich nun die Frage nach der Auswahl zielführender Renaturierungsmaßnahmen
für anthropogen stark veränderte Nadelwälder (Fichte und Kiefer) in Europa. Bezogen auf den vorliegenden Ausgangszustand jener Waldgebiete, die für eine entsprechende Renaturierung infrage kommen, ergeben sich die folgenden allgemeingültigen Charakteristika hinsichtlich der Standorte und Bestandesstrukturen (vgl. dazu auch Tabelle 13, Abschnitt 6.2):

- geringe bis mittlere Standortgüte hinsichtlich Trophie und Wasserversorgung,
- Reinbestände mit mehrheitlich geschlossenem Kronendach,
- Einschichtigkeit und vergleichbare Einzelbaumeigenschaften,
- hohe Bestockungsdichten,
- geringer Totholzanteil,
- ungünstige Humusform infolge Entkopplung des C-Kreislaufes,
- homogene, meist artenarme Bodenvegetation,
- geringe faunistische Diversität,
- Abundanz/Dominanz einzelner Arten(gruppen), die im naturnahen System eine weitaus geringere Präsenz aufweisen würden.

Abb. 9.
Gefährdungsprofil der Kiefer im Altersklassenwald

Auch das Störungsregime hat sich durch die strukturellen Veränderungen in den Kiefernforsten stark verändert, sodass sich sowohl grundsätzliche Verschiebungen hinsichtlich der Störungsursachen ergeben, aber in den einzelnen Entwicklungsstadien auch andere Störungsschwerpunkte auftreten. Abbildung 9 zeigt, dass die Feuergefährdung von natürlichen Kiefernwäldern in hochproduktiven...
Entwicklungsstufen durch die entwickelten Kontrollsysteme in mitteleuropäischen Kiefernforsten unterbunden wird. Im Vergleich dazu steigen die Risiken einer großflächigen und altersunabhängigen Zerstörung von Monokulturen durch die Massenvermehrung von Schadinsekten, z.B. Rüsselkäfer, Kiefernspanner, Kiefernspinner, Nonne, Forleule und Blattwespen (ALTENKIRCH et al. 2002). Die nachfolgenden Vorschläge für entsprechende Behandlungsvarianten zur Renaturierung von DBU-Naturerbeflächen in ausgewählten Versuchsregionen orientieren sich an möglichen Störungsszenarien, aber auch an deren Umsetzbarkeit mit Blick auf das geschachtelte Versuchsdesign (Abschnitt 6).

2.3.1 Einzelbaum- bis truppweise Entnahme von Altbäumen und Totholzerzeugung

Auch in reinen Kiefernwäldern stellen Totholzvorkommen ein wichtiges Initial zur Förderung von Artenvielfalt und Naturnähe dar. So wurde in unbewirtschafteten P. banksiana Wäldern in Quebec, Kanada 16-113 m³/ha liegendes Totholz gefunden (Brais et al. 2005). Ähnliche Mengen liegenden Totholzes wurden in reinen P. sylvestris Beständen in Finnland gefunden (8-128 m³/ha; Kajalainen & Kuuuvainen 2002), in denen zusätzlich noch 10-56 m³/ha stehendes Totholz vorhanden war. Lindner et al. (1997) berichten Gesamt mengen von 66-120 m³/ha, davon im Mittel 41 m³/ha stehendes und 50 m³/ha liegendes Totholz. Die häufig gering gehaltenen Totholzanteile in bewirtschafteten Kiefernwäldern begründen sich mehrheitlich durch die angestrebte Verminderung der Brandgefahr.

Die Zielformulierung, den Totholzanteil sowie die Diversität der Totholzvorkommen langfristig zu steigern, erfordert die Aufstellung eines Maßnahmenkatalogs zur technischen Umsetzung und Koordination auf den Waldflächen. Nach HUMPHREY & BAILEY (2012) können in diesem Zusammenhang vier wesentliche Maßnahmengruppen unterschieden werden:

- **Arbeit mit natürlichen Prozessen**

- **Erhalt und zusätzliche Anreicherung**

- **Schaffung und Ausweitung von Totholzhabitaten**
seln, Höhlen, Fäule, u.a. als zukünftige Totholzbäume stellt eine langfristig sinnvolle Möglichkeit der Totholzförderung dar (BÜTLER et al. 2006), die bisher allerdings nur wenig praktiziert wird.

o Verbesserung der Vernetzung von Totholzhabitaten

Abb. 12.
Möglichkeiten der Totholzetablierung mittels Verletzung des Kambiums am stehenden Stamm (a & b) und technische Umsetzung der Windbruchsimulation (c) (aus: SIMIÄ & JUNNINEN 2012, S.15a, b, und c)

2.3.2 Windwurf- und Windbruchsimulation

diesem Fall stark von der Größe der Störung abhängig. Darüber hinaus ist es die Vielzahl an Bestandesstrukturen als Resultat von Wurf und Bruch, die sich folgendermaßen charakterisieren lassen (SHOROHOVA et al. 2008, MITCHELL 2013):

- entwurzelte, in liegendes Totholz übergehende Bäume,
- Kronenbrüche und daraus resultierendes stehendes Totholz,
- angeschobene Pflanzen, die noch über einen gewissen Zeitraum Wurzelkontakt besitzen,
- übereinanderliegende Stämme, die langfristig aggregierte Totholzvorkommen bilden,
- großflächige Stammschäden am Kambium, die ein langfristiges Absterben des Baumes verursachen können,
- auf- und zurückgeklappte Wurzelteller, die kleinräumig die Reliefformen erhöhen und zur Entstehung eines veränderten Mikroreliefs führen (ARÉVALO et al. 2000, ULANOVA 2000).

2.3.3 Waldbrand

(1) Grösse der Brandfläche und Periodizität der Feuerereignisse

(2) Feuerintensität (Boden- versus Kronenfeuer) und Geschwindigkeit

Abb. 13.
Exkursion zu einer Brandfläche in den Kaarßer Sandbergen (Foto links: S. WAGNER 2012); Kiefernwald in der Tschechischen Republik ebenfalls nach einem Waldbrand mit geringer Intensität (Foto rechts: M. ADAMEK 2012)

(3) Einfluss auf Verjüngung und Begleitvegetation

Abb. 14.
Unterschiedliche Behandlungsvarianten in Kombination mit Feuer (aus: VANHA-MAJAMAA et al. 2007; S. 80)

2.3.4 Hiebsmaßnahmen im Altbestand und Voranbau mit Buche und Eiche

2.3.5 Kontrollvariante
Für einen vollständigen Versuchsaufbau, der sich mit dem Entwicklungspotenzial von Wäldern in Abhängigkeit von unterschiedlichen Behandlungsvarianten befasst, ist es notwendig unbehandelte Referenzflächen aufrecht zu erhalten (JEFFERS 1960). Auf diese Weise lassen sich echte Behandlungseffekte identifizieren. Bezüglich der Renaturierung von Waldökosystemen bildet die sog. Kontrollvariante die von unmittelbaren menschlichen Eingriffen unbeeinflussten Systemzustände und Prozesse ab. Für einschichtige, gleichaltrige Kiefernwälder bedeutet der Verzicht auf jegliche Eingriffe, dass naturnahe Zustände nur sehr langfristig erreicht werden können. Derartige „Wildnisflächen“ haben “[...] a high level of predominance of natural process and natural habitat. They tend to be individually smaller and more fragmented than wilderness areas, although they often cover extensive tracts. The condition of their natural habitat, processes and relevant species is however often partially or substantially modified by human activities such as livestock herding, hunting, fishing, forestry, sport activities or general imprint of human artifacts” (WILD EUROPE 2012).

Abb. 15.
Gegenüberstellung der simulierten Darstellungen zur Verteilung der pnV unter gegenwärtigen (links) und zukünftigen (rechts) klimatischen Rahmenbedingungen für das Bundesland Brandenburg (aus: LASCH et al. 2002)

Aus der Darstellung potenzieller Renaturierungsmaßnahmen, die in Waldökosystemen und speziell in Kiefernökosystemen zur Anwendung kommen können, geht bereits hervor, dass das Vorwissen zur grundsätzlichen Handhabung von Totholz vergleichsweise umfangreich ist. Vielgestaltige Techniken sind erprobt, die jedoch deutliche Unterschiede hinsichtlich ihrer Effekte in den verschiedenen Waldökosystemen zeigen. Im Vergleich dazu sind Windwurf- und Windbruchexperimente nur in geringem Umfang vorhanden und wissenschaftlich dokumentiert, da der technische Aufwand zur Etablierung deutlich höher einzuschätzen ist und auch die kontinuierliche Dokumentation in der Umsetzung eine Herausforderung darstellt. Der große Anteil großflächiger Schäden durch extreme Sturmereignisse unterstreicht jedoch die gestiegene Relevanz dieses Störungsregimes für Wälder in Mitteleuropa.

2.4 Ableitung möglicher Entwicklungsszenarien

In Anlehnung an die Referenzsysteme und Waldentwicklungsszenarien in Abschnitt 2.2 lassen sich unter Berücksichtigung der vier Maßnahmenschwerpunkte zur Renaturierung der Kiefernreinbestände in den Liegenschaften der DBU konkrete Waldentwicklungsszenarien ableiten, die in Abbildung 16 dargestellt sind.

Aus den Forsteinrichtungsdaten (Stichtag 01.10.1996) und der 2012/13 durchgeführten Flächen-Vorevaluation ergeben sich beispielsweise für die Liegenschaft Rüthnicker Heide, Revier Birkholzgrund (Block I-III) folgende Charakteristika:

- Die Altersspanne der Kiefer im Oberstand liegt im Mittel bei 71 ± 18 (Spanne 49-82 Jahre; Stichtag 31.12.2013), mit Ausnahme von zwei kleinen eingebetteten Teilflächen mit Kiefern im Alter von 115 Jahren. Zum Zeitpunkt der letzten Forsteinrichtung lag der Bestockungsgrad im Durchschnitt bei 1,0 ± 0,1 (FE vom Stichtag 01.10.1996), und wurde beim Flächenbegang für die ausgewählten Teilflächen als > 0,8 eingeschätzt.
- Als Mischbaumarten werden im Oberstand vor allem einzelbaumweise bis truppweise eingemischte Birke, sowie einzelne meist alte Exemplare von Trauben-Eiche und Rot-Buche genannt. Sehr vereinzelt sind im Oberstand auch Europäische Lärche (kleine Teilflächen) sowie Douglasie und Gemeine Fichte (einzelbaum- bis truppweise) genannt, die im Zuge der Flächenvorbereitung zu entnehmen wären. Innerhalb der ausgewiesenen Versuchsblöcke finden sich darüber hinaus kleine Teilflächen mit reiner Birke sowie Kiefernstangenhölzern, die weder als Versuchsfläche geeignet sind, noch von Relevanz für die benachbarten Versuchsflächen sind und somit belassen werden können.
- In der Naturverjüngung finden sich vorrangig die Baumarten Trauben-Eiche und Birke, die einzelbaumweise flächig vorkommen, jedoch i.d.R. stark verbissen sind. In der Nähe der im Oberstand vorhandenen Altlämmer von Douglasie und Fichte ist vereinzelt Naturverjüngung dieser Baumarten zu finden, die ebenfalls vor Versuchsbeginn entfernt werden müsste.
- Die standörtlichen Gegebenheiten sind als mittelfrische, ziemlich arme (ca. 21% der Fläche) bis mäßig nährstoffhaltige (ca. 79% der Fläche) Sande mit mäßig frischem Rohhumus charakterisiert.
- Laut den Angaben im Bestandeslagerbuch werden als potenzielle natürliche Vegetation vorrangig Hainrispen-WLI-TEI-BU-Wald (auf ca. 79% der Fläche) sowie Sauerklee-Blaubeer-BU-TEI-Wald (auf ca. 21% der Fläche) angenommen.
Darstellung der potenziellen Entwicklungsszenarien nach Anwendung vier unterschiedlicher Waldrenaturierungsmaßnahmen für die Ausgangsbedingungen auf der Liegenschaft Rüthnicker Heide, Revier Birkholzgrund (Blöcke I-III)

(Die Abkürzungen für die Baumarten stehen für: Pi – Pinus, Qu – Quercus, Fa – Fagus, Be – Betula). Die einzelnen Systemzustände sind mit (Z) und die betrachteten Entwicklungsphasen mit (t) bezeichnet.

Als besonders schwierig erweist sich die Herleitung von Entwicklungsprognosen für die **Variante D**. Diese Kontrollvariante schließt, beginnend mit dem gegenwärtigen Ausgangszustand, alle aktiven Maßnahmen aus. Die Variante D durchläuft alle systemimmanenten ökologischen Prozesse und wird in Entwicklungsrichtung und Geschwindigkeit extern lediglich durch klimatische Einflüsse und ggf. atmogene Deposition modifiziert. Es ist davon auszugehen, dass erst mit Beginn des Zeitraumes t3 (nach weiteren 50 Jahren Entwicklung) die Auflösung der momentan vorherrschenden Bestandesstrukturen einsetzen wird. Erneut scheidet die Birke, soweit bereits als Mischbaumart vorhanden, frühzeitig aus dem Oberstand aus, während sich aufgrund konkurrenzbedingter Differenzierungs-
2.5 Großexperimente, Minimumareale und zeitliche Betrachtungseinheiten

Folgende Definitionen werden für waldbauliche Großexperimente gegeben: “Large-scale silviculture experiments are silviculture experiments conducted at operational scales. As true manipulative experiments (sensu HURLBERT 1984), LSSEs are characterized by such fundamental elements of experimental design as randomization, replication, and unmanipulated, “control” treatments (MONSERUD 2002).” Die Bezeichnung eines waldbaulichen Experiments leitet sich aus der Integration von Behandlungsmaßnahmen ab, die u.a. Durchforstungen oder Erntehiebe etc. berücksichtigen. Als Besonderheit von Großexperimenten wird die breite Variation an erklärenden Variablen, z.B. Baumarten, Mischungen, Kleinsäuger, Totholz, Pilze, Boden, Mikroklima und soziale Komponenten angegeben. Mit der Erfassung erklärender Variablen wird die Reaktion des Ökosystems auf konkrete Behandlungsvarianten beschrieben. Die Abgrenzung zu sog. „Management experiments“ (ME) liegt...
darin, dass LSSE ausschließlich wissenschaftliche Ziele verfolgen, während ME als integraler Bestandteil von Forstverwaltungen gelten und im Rahmen von regulären Maßnahmen dokumentiert werden.

Das Versuchsdesign von Großexperimenten sollte stets zeitliche und räumliche Betrachtungseinheiten miteinander verbinden. Die Größenangaben zu den eingerichteten Behandlungseinheiten in den Experimentalflächen reichen von >2 ha bis 40 ha (POAGE & ANDERSON 2007). Für die Wahl der Flächengrößen einzelner Behandlungsvarianten werden unterschiedliche Begründungen gegeben. Zum einen ist die Flächenverfügbarkeit, bezogen auf spezifische Anforderungen an die Waldstruktur und die standörtlichen Gegebenheiten, entscheidend. Zum anderen liefern die konkrete Fragestellung und die Zielorganismen, die untersucht werden sollen, den wesentlichen Ansatz für die Größe der Untersuchungseinheiten. Nach MONSERUD (2002) gilt: „In such experiments, the treatment unit is large enough to include the relevant physical, chemical, and biotic context of the processes being studied“. In diesem Zusammenhang stellt sich, ähnlich wie bei der Ausweisung von Schutzgebietskategorien, die Frage nach akzeptablen Minimumarealen (PARVIAINEN 2005). BUCKING (2003) formuliert in seiner Zusammenfassung, dass die einfachste Methode zur Herleitung des potenziellen Minimumareals die Berechnung des notwendigen Pufferbereichs sei, um Randeffekte auszuschließen. Bei einer theoretischen Baumhöhe von 50 m hätte eine Fläche von 100 m x 100 m (1 Hektar) keine unbeeinflusste Kernzone. Je kleiner eine kompakte Fläche also ist, umso ungünstiger ist die Relation zwischen Flächengröße und Randlinieneinfluss. In Anlehnung an die Zusammenstellungen von MONSERUD (2002), BUCKING (2003), PARVIAINEN (2005), SEYMOUR et al. (2006) und MEYER (2009) zur Größe von Waldschutzgebieten ergeben sich die folgenden Flächenrelationen:

<table>
<thead>
<tr>
<th>Parameter für die Festlegung der Flächengröße</th>
<th>Minimumfläche [ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waldstrukturen</td>
<td>5 - 100</td>
</tr>
<tr>
<td>Mikro- und Mesofauna</td>
<td>50 - 100</td>
</tr>
<tr>
<td>Großsäuger und Vogelarten</td>
<td>>100</td>
</tr>
<tr>
<td>Behandlungskonzepte und Empfehlungen</td>
<td>20 - 500</td>
</tr>
<tr>
<td>Lückenuntersuchungen</td>
<td>40</td>
</tr>
</tbody>
</table>

3 Forschungsziele und Hypothesen

3.1 Priorisierte Zielstellungen

Als übergeordnete Zielstellung wird auf den Naturerbflächen die Umsetzung der Nationalen Biodiversitätsstrategie (NBS) mit Blick auf naturnahe Waldökosysteme verfolgt (BMU 2007). Anhand des gewählten Ausgangssystems „Kiefernforste“ sollen Lösungsansätze für eine beschleunigte, ökonomisch und ökologisch nachhaltige Wildnisgebietsausweisung (Kriterien und Maßnahmen) erarbeitet werden.

Eine wichtige Zielsetzung des Forschungskonzepts beinhaltet die Formulierung des angestrebten Systemzustands, der sich aus einem zuvor definierten Systemziel ableitet. Als ein mögliches Referenzsystem ist die pnV anzusehen, mit deren Hilfe die Naturnähe des Systemzustands eingeschätzt werden kann. In diesem Zusammenhang sind jene Argumentationen zu berücksichtigen, die sich kritisch mit der Nutzung der pnV als Referenzsystem auseinandersetzen (vgl. u.a. ZERBE & WIEGELI...

3.2 Wissenschaftliche Hypothesen

Das Gesamtkonzept der geplanten Versuchsanlage beruht auf den nachfolgenden, wissenschaftlich unterlegten Hypothesen. Die Hypothesen beinhalten eine Versachtlung der räumlichen Betrachtungseinheiten. Innerhalb der Versuchsanlage ergibt sich deshalb eine differenzierte Bewertung einzelner Maßnahmen, die sowohl auf Ebene der Parzellen (= Zerlegungseinheiten), aber auch auf Ebene der Versuchsblöcke erfolgen muss (vgl. dazu Abbildung 18).

Hypothese 1a:
Größere Diversität und Naturnähe ergeben sich bei Approximation von Randlinienlängen an Urwaldsysteme.

Die Verwendung der β-Diversität dient im Kontext des Großexperimentes als Messgröße vor allem dazu, lokale und regionale Effekte auseinanderzuhalten. So kann die Lebensgemeinschaft im lokal begrenzten Kiefernökosystem aus sehr vielen Arten bestehen, ergo eine hohe α-Diversität besitzen, jedoch regional - also über die Versuchsvarianten hinweg - durchaus uniform sein, sodass dieselbe artenreiche Lebensgemeinschaft in derselben Zusammensetzung überall auftritt. Im Gegensatz dazu kann die Lebensgemeinschaft an allen untersuchten Orten eher arten- und prozessarm sein (geringe α-Diversität), sich regional aber äußerst divers präsentieren. Hohe α- und hohe β-Diversität müssen also nicht notwendigerweise miteinander zusammenhängen, und ihre Differenzierung verspricht mit Blick auf das Versuchsflächendesign wertvollen Erkenntnisgewinn.

Gemäß der Hypothese 1 ist die Erhöhung der Randlinienlängen innerhalb einer definierten größeren Betrachtungseinheit (z.B. Versuchsblöcke) durch die stärkere Zerlegung in Teileinheiten (z.B. Parzellen) mit vermindelter Größe zu erreichen. Die damit angestrebte Erhöhung der Diversität führt somit zur Frage der Größe bzw. Anzahl dieser Teileinheiten, um eine Arten- und Strukturmaximierung als Maß für größte Naturnähe zu realisieren. Abbildung 17b verdeutlicht in diesem Zusammenhang,

Abb. 17.

a.) Schematische Darstellung möglicher Randlinieneffekte und ihre Wirkung auf die Flächendiversität (links);

b.) Darstellung des Zusammenhangs zwischen Flächengröße, Randlinienlänge und Diversität von Strukturen und Arten (rechts)

Hypothese 1b:

Die räumliche Überlagerung der Varianteneffekte beschleunigt zusätzlich die Entwicklung des Systems zu größerer Naturnähe.

Die räumliche Trennung unterschiedlicher Behandlungs- oder Entwicklungsvarianten bildet je nach Betrachtungseinheit ein Mosaik interagierender Teileinheiten. Neben den bereits beschriebenen Randlinieneffekten, die wesentlich zur Vernetzung oder Abgrenzung dieser Teileinheiten beitragen, ist davon auszugehen, dass die absolute Flächengröße der Teileinheiten den Entwicklungsfortschritt (z.B. Eintrag von Diasporen) maßgeblich beeinflusst. Eine beschleunigte Naturnäheentwicklung dokumentiert sich in der Präsenz immobiler Arten mit geringem Ausbreitungspotenzial. Für den Bereich der Fauna lassen sich hier u.a. die Klassen der Mollusken, Lurche oder Reptilien nennen (s. Abschnitt 4.5). Ihre Habitatbindung ist vergleichsweise groß. Neben der natürlichen Immobilität dieser Tier-

Hypothese 2:
Eine langfristige Vielfalt von Zuständen und Prozessen kann in einem renaturierungsbedürftigen homogenen, naturfernen Waldökosystem nur dann erreicht werden, wenn die Manipulation a) zeitgleich an unterschiedlichen Ökosystemkomponenten wirksam wird und b) eine massive und damit effektive Störgröße darstellt.

a) Bei den hier betrachteten Waldökosystemen kann eine experimentelle Manipulation von einer drastischen Veränderung gewachsener charakteristischer Strukturen (wie dem Entfernen des kompletten Bestandesgefüges) bis hin zur lediglich ephemeren Modifikation einzelner vertikaler oder horizontaler Strukturelemente (wie einer räumlich eng begrenzten Bodenbearbeitung) reichen. Der erste Teil der Hypothese ließe sich über ein Variantenstudium überprüfen, in dem z.B. in einem Fall 30 % des Oberstands entnommen werden und in einem anderen Fall zusätzlich zu dieser Entnahme im Oberstand ein Voranbau von Buchen oder Eichen erfolgt. Eine Kontrollvariante ohne Oberstandsmanipulation und ohne Voranbau erlaubt die entsprechenden Effektprüfungen.

4 Versuchsdesign

4.1 Terminologien des Großexperiments

Die in Tabelle 4 vorgestellten und eindeutig definierten Bezeichnungen sind essenziell für das Verständnis der nachfolgenden Abschnitte zum Versuchsdesign und sind konsequent für die Kommunikation in Bezug auf das Großexperiment zu verwenden.

<table>
<thead>
<tr>
<th>Deutsch</th>
<th>Englisch</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokalität</td>
<td>site</td>
<td>Gesamtheit der Versuchsanlagen innerhalb einer DBU-Liegefläche</td>
</tr>
<tr>
<td>Block</td>
<td>block</td>
<td>zusammenhängende Versuchflächeneinheit, die eine definierte Gesamtfläche aller Behandlungsvarianten mit unterschiedlicher Parzellengröße (Zerlegung) umfasst</td>
</tr>
<tr>
<td>Pufferzone</td>
<td>bufferzone</td>
<td>Bereich der Versuchsfläche, der zwischen den einzelnen Blöcken (Abstand ≥30 m) und zwischen den Blöcken und umliegenden Waldflächen (Abstand ≥70 m) liegt, den Kriterien zur Versuchsflächenauswahl genügt und einheitlich bewirtschaftet wird</td>
</tr>
<tr>
<td>Parzelle (= Versuchseinheit)</td>
<td>unit</td>
<td>kleinste Teilseinheit der Versuchsfläche, die einer definierten Behandlungsvariante zugeordnet ist und innerhalb eines Blocks stets eine einheitliche Größe aufweist</td>
</tr>
<tr>
<td>ungezäunte/gezäunte Teilfläche</td>
<td>unfenced/fenced</td>
<td>Teilbereich einer Parzelle, der ungezäunt bzw. gezäunt ist (keine eigenständige Versuchseinheit)</td>
</tr>
<tr>
<td>Plot</td>
<td>plot</td>
<td>Teilbereich einer Parzelle auf der Versuchsparameter erfasst werden; u.U. mehrere Plots je Parzelle; Größe und Form der Plots abhängig von zu erfassenden Parametern</td>
</tr>
<tr>
<td>Transek</td>
<td>transect</td>
<td>lineare Struktur entlang derer Versuchsparameter erfasst werden; u.U. mehrere Transekte je Parzelle oder parzellenübergreifend; Länge abhängig von Parametern</td>
</tr>
<tr>
<td>Behandlung</td>
<td>treatment</td>
<td>definierte Kombination von Renaturierungsmaßnahmen die im Zuge der Versuchsanlage einmalig implementiert werden; eindeutige Zuordnung zu den Parzellen</td>
</tr>
<tr>
<td>Maßnahmen</td>
<td>measures</td>
<td>einzelne Eingriffe in die Versuchsfläche, die zu Behandlungsvarianten kombiniert werden</td>
</tr>
<tr>
<td>Vorinventur</td>
<td>establishment inventory</td>
<td>Inventur der Versuchsflächen zur Quantifizierung der Inhomogenitäten innerhalb der Versuchsfläche, zur Delinierung der Blöcke und Parzellen und zur Zuweisung der Behandlungsvarianten ((t = -1\text{ Jahr}))</td>
</tr>
<tr>
<td>Initialinventur</td>
<td>pre-treatment inventory</td>
<td>Inventur der Versuchsflächen als Referenz für die spätere Quantifizierung der Effekte der Behandlungsvarianten ((t = 0\text{ Jahre}))</td>
</tr>
<tr>
<td>Folgeinventur</td>
<td>follow-up inventory</td>
<td>Inventur der Versuchsflächen zur Quantifizierung der Effekte der Behandlungsvarianten im Laufe der Zeit im Vgl. zur Initialinventur ((t = 1, 2, 3, 4, 5, 10, \text{ usw. Jahre}))</td>
</tr>
</tbody>
</table>
4.2 Versuchsvarianten (Behandlungen)

Zur Prüfung der in Abschnitt 3 hergeleiteten Hypothesen sind neben einer unbehandelten Kontrollvariante und der Status quo-Variante mindestens zwei weitere komplexe Behandlungsvarianten erforderlich, die sich hinsichtlich der zu erwartenden Auswirkungen auf das Waldökosystem drastisch unterscheiden (siehe Abschnitt 2). Alle Behandlungsvarianten nehmen in jeweils unterschiedlichem Maß Einfluss auf den i) sukzessionalen Zustand des Waldökosystems, ii) die Bestandesstruktur, iii) das Auftreten von Sonderstrukturen (Totholz, Wurfböden, etc.) und iv) das Naturverjüngungspotenzial.

4.2.1 Variante A: Einzelbaum- bis truppweise Entnahme des Oberstands und Totholzerzeugung

Diese Behandlungsvariante setzt sich aus aktuell in der Praxis durch die DBU angewandten Re-naturierungsmaßnahmen zusammen (s. Abschnitt 2.3). Dementsprechend ist sie von großer Relevanz bei der Bewertung zurzeit Praktiken und möglicher Empfehlungen für Anpassungen der aktuell auf den Naturerbe-Flächen verfolgten Waldbehandlungsstrategien. Im Detail umfasst die Behandlungsvariante C die Auflichtung des Oberstands durch die einzelbaum- bis truppweise Entnahme von 25% des stehenden Vorrats sowie die Schaffung stehenden Totholzes durch Umschneiden oder Ringeln einzelner Bäume.

4.2.2 Variante B: Simulation von Windwurf und Windbruch

Eine Rücküberführung des Waldökosystems in frühere Sukzessionsstadien kann nur durch eine starke Auflichtung des Oberstands in Kombination mit einer erheblichen Störung der organischen Auflagehorizonte und einer zumindest partiellen Freilegung des Mineralbodens erreicht werden (s. Abschnitt 2.3). Mögliche Maßnahmen dieser Behandlungsvariante wären somit

a) eine gleichmäßige Auflichtung des Oberstands durch die flächige Entnahme von ca. 30 % des stehenden Vorrats mit nachfolgendem Umschieben bzw. -brechen von weiteren 30 % des Oberstands zur Schaffung stehenden und liegenden Totholzes sowie von Wurfböden (Analogie: Sturmereignis), oder

b) eine gleichmäßige Auflichtung des Oberstands durch die flächige Entnahme von >50 % des stehenden Vorrats mit nachfolgendem Bodenfeuer zur flächigen Freilegung des Mineralbodens durch Verbrennen der Humusaufklage (Analogie: Waldbrand).

Für das geplante Großexperiment wird die Simulation eines Sturmereignisses empfohlen, indem großflächig Totholz und Hochstubben geschaffen werden und der Mineralboden freigelegt wird (a). Aufgrund der örtlichen Gegebenheiten auf den vorausgewählten Versuchsflächen ist die Realisierung kontrollierter Waldbrände im gewünschten Umfang (je Lokalität 40 ha in unterschiedlichen Einheiten) nicht möglich. Zum einen gestattet die Nähe zu Siedlungen und die erforderlichen Genehmigungsverfahren die Durchführung derartiger Maßnahmen nicht. Zum anderen sind die witterungsbedingten Zeitfenster für den kontrollierten Einsatz von Feuern klein und die Risiken (z.B. Über-greifen auf Nachbarbestände und Kontrollverlust bei trockenen und windigen Witterungslagen) groß. Darüber hinaus ist zu erwarten, dass die teilweise mächtigen Humusauflagen durch die erreichte Brandintensität nicht ausreichend verbrennen, um den für die Keimung von Pionierbaumarten erforderlichen Mineralboden freizueigen.
4.2.3 Variante C: Flächige Auflichtung des Oberstands und Pflanzung

4.2.4 Variante D: unbehandelte Kontrolle

Für eine statistisch abgesicherte Quantifizierung möglicher Behandlungseffekte für die Varianten A–C und die Berücksichtigung von zufälligen Einflüssen im Versuchszeitraum auf die gesamte Versuchsfläche (z.B. allgemeiner Anstieg der mittleren Jahrestemperatur, Änderung des Niederschlagsregimes, Eintrag atmosphärischer Stickstoff etc.) ist die Anlage einer unbehandelten Kontrollvariante essentiell. Im Kontext von Renaturierungsmaßnahmen kommt dieser Behandlungsvariante darüber hinaus eine zusätzliche Bedeutung zu, da der Verzicht auf jegliche Maßnahmen oft als ein eigenständiges Konzept im Sinne der Renaturierung verstanden wird und als solche hinsichtlich der geänderten Diversität ebenfalls zu evaluieren ist.

4.2.5 Teilbehandlung: Gezäunte und ungezäunte Teilflächen

Innerhalb jeder der vier Behandlungsvarianten werden zur Quantifizierung des Einflusses von verbeißendem Schalenwild auf die Waldentwicklung und die Sukzession ca. 25% der Versuchsfläche mit hasen- und rotwild-sicherem Zaun eingezäunt. Es ist darauf zu achten, dass die einzelnen Zaunareale eine maximale Größe von 2,5 ha haben, damit die eingezäunten Bereiche bei Anlage frei von Wild sind und im Versuchszeitraum dicht gehalten werden können (regelmäßige Kontrolle und ggf. Reparaturen erforderlich).

4.3 Randliniengradient (Versuchsblöcke)

Überblick über das geschachtelte Versuchsdesign

<table>
<thead>
<tr>
<th>Lokalität</th>
<th>Behandlung (b = 4)</th>
<th>Block (k = 4)</th>
<th>Parzellen je Behandlung (w ∈ {1;8})</th>
<th>Parzellengröße</th>
<th>Randlinienlänge je Block</th>
<th>gezäunte (Z)/ ungezäunte UZ) Fläche (z = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rüthnicker Heide</td>
<td>A</td>
<td>I</td>
<td>1</td>
<td>10 ha</td>
<td>ca. 1300 m (32,5 m/ha)</td>
<td>Z: ca. 25% UZ: ca. 75%</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>II</td>
<td>2</td>
<td>5 ha</td>
<td>ca. 2300 m (57,5 m/ha)</td>
<td>Z: ca. 25% UZ: ca. 75%</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>III</td>
<td>4</td>
<td>2,5 ha</td>
<td>ca. 3900 m (97,5 m/ha)</td>
<td>Z: ca. 25% UZ: ca. 75%</td>
</tr>
<tr>
<td>Zschornoer Wald</td>
<td>C</td>
<td>IV</td>
<td>8</td>
<td>1,25 ha</td>
<td>ca. 5900 m (147,5 m/ha)</td>
<td>Z: ca. 25% UZ: ca. 75%</td>
</tr>
<tr>
<td>Ückermünder Heide</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Empfehlenswert ist daher die Anlage von 4 Blöcken (k = 4) in jeder der 4 Lokalitäten (n = 4) mit abgestuften Randlinienlängen, d.h. mit jeweils unterschiedlichen Parzellengrößen (Tab. 5; Abb. 18). Bei einer Blockgröße von 40 ha und vier Behandlungsvarianten (b = 4) sind somit je Block insgesamt jeweils 10 ha flächenmäßig zu gleichen Teilen den Behandlungsvarianten zugeordnet, allerdings je nach Block zerteilt in 1 Parzelle à 10 ha (w = 1), 2 Parzellen à 5 ha (w = 2), 4 Parzellen à 2,5 ha (w = 4) bzw. 8 Parzellen à 1,25 ha (w = 8).
Da neben der Randlinienlänge auch die **Gradienten zwischen den einzelnen Behandlungsvarianten** innerhalb der Versuchsblöcke von Interesse sind, sollten die Behandlungsvarianten den Parzellen nicht ausschließlich randomisiert zugeordnet werden. Durch eine zufällig ungleichmäßige Zuordnung der Varianten zu den Parzellen können zum einen bei inhomogenen Standortverhältnissen systematische Fehler entstehen, und zum anderen kann es zu einer Ungleichverteilung der bilateralen Nachbarschaften der Behandlungsvarianten kommen. Um hinsichtlich der Effekte aller Gradienten zwischen je zwei Behandlungsvarianten statistisch abgesicherte Aussagen treffen zu können, sollten die Häufigkeiten aller Kombinationen von je zwei Varianten (Nachbarschaften) innerhalb eines Blocks weitgehend eine Gleichverteilung aufweisen. Dies kann durch eine „gerechte randomisierte Blockanlage“ erreicht werden, bei der die Varianten zufallsgemäß auf die Parzellen verteilt und durch Umgruppierung in einer Weise angeordnet werden, dass die Häufigkeit der Nachbarschaften in etwa gleich ist. Die je nach Block verbleibenden Ungleichheiten können bei der Verteilung der Stichprobenpunkte berücksichtigt werden (vgl. Abschnitt 4.5.3). In der nachfolgenden Grafik ist beispielhaft für vier 500 m x 800 m große Versuchsblöcke eine günstige bzw. im 16-Parzellen-Block die optimale Verteilung der vier Behandlungsvarianten berücksichtigt, mit einer annähernden Gleichverteilung der möglichen Nachbarschaften.

Abb. 18. Schematischer Überblick über das Versuchsdesign: 4 Lokalitäten x 4 Versuchsblöcke x 4 Varianten. Unterschiedliche Ziffern entsprechen unterschiedlichen Varianten (ohne eindeutige inhaltliche Zuordnung).
Mögliche Zuordnung von vier Behandlungsvarianten zu den Parzellen in den vier verschiedenen Blöcken (schematisch, d.h. ohne konkrete inhaltliche Zuordnung der Behandlungen)

Tab. 6. Häufigkeiten der Nachbarschaften zwischen je zwei der vier Behandlungsvarianten für die einzelnen Versuchsblöcke

<table>
<thead>
<tr>
<th>Block</th>
<th>Anzahl der Nachbarschaften zwischen einzelnen Behandlungsvarianten</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
<td>A-C</td>
</tr>
<tr>
<td>4 Parz.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8 Parz.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>16 Parz.</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>32 Parz.</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
4.4 Zeitlicher Horizont des Großexperiments

Angesichts des Zeitraums, der allein für die Anlage eines Renaturierungsexperiments der angedachten Größenordnung erforderlich ist, und der Zeiträume, innerhalb derer sich voraussichtlich die Reaktionen der relevanten Ökosystemparameter auf die initialen Renaturierungsmaßnahmen einstellen werden, liegt der zeitliche Horizont für das geplante Großexperiment bei mindestens 30 Jahren.

4.4.1 Phasen der Versuchsdurchführung

Prinzipiell sind fünf Phasen der Versuchsdurchführung zu unterscheiden:

Phase I: Vorinventur (Dauer ca. 1 – 2 Jahre)

Vor der Implementierung der eigentlichen Versuchsanlage ist zur Erfassung der ursprünglichen Ausprägungen aller im Rahmen des Großexperiments zu erfassenden Parameter auf der gesamten Versuchsfläche eine Vorinventur hinsichtlich Waldstruktur, Verjüngung, Streu- und Samenfall, Bodenzustand und Bodenvegetation und Insekten (Fauna) sowie möglicher weiterer Basisparameter durchzuführen.

Zum anderen dienen die Vorinventur-Daten von Verjüngung, Streu- und Samenfall, Bodenzustand und -vegetation sowie Insekten als Referenzwert für die Analyse der unmittelbaren Effekte der Renaturierungsmaßnahmen (= absoluter Nullpunkt). Für Parameter, die während der Vorinventur nicht erfasst wurden, können zu einem späteren Zeitpunkt keine Aussagen über mögliche unmittelbare Behandlungseffekte mehr getroffen werden.

Idealerweise sollte diese Phase der Vorinventuren nicht nur 1 Jahr andauern (Abschnitt 5.2), sondern auf 2 Jahre (d.h. 2 Vegetationsperioden) ausgedehnt werden, um insbesondere für Organismen mit ausgeprägt annueller Abundanz (z.B. Insekten, Pilze) einen verlässlichen Bezugs-wert für die spätere Abschätzung des Behandlungseffekts zu erhalten. Aufgrund der räumlichen Variabilität vieler Arten können die in die Versuchsanlage integrierten Kontrollvarianten eine intensive Vorinventur nur bedingt ersetzen.

Phase II: Anlage der Behandlungsvarianten (Dauer ca. 6-9 Monate je Lokalität)

Nach Abschluss der statistisch abgesicherten Erfassung der Ausgangssituation im Rahmen der Vorinventur können die eigentlichen Behandlungsvarianten (s. Abschnitt 4.2) implementiert werden. Je nach Größe der Versuchsfläche und Koordination der einzelnen Arbeitsschritte sind
hierfür prinzipiell ca. 6-9 Monate je Lokalität erforderlich, da die für die einzelnen Behandlungsvarianten erforderlichen Arbeitsschritte z.T. abhängig von Jahreszeit und Witterung sind (z.B. Pflanzung) und deshalb in sinnvoller Abfolge geplant und umgesetzt werden müssen (z.B. Holzeinschlag vor Zaunbau vor Pflanzung). Idealerweise erfolgt die Anlage der Behandlungsvarianten im Herbst und Winter direkt nach Beendigung der Vorinventur (z.B. Oktober bis März), sodass im darauffolgenden Frühjahr sofort die Initialinventur durchgeführt werden kann, um die unmittelbaren Effekte der Renaturierungsmaßnahmen zu erfassen.

Phase III: Unmittelbare und kurzfristige Effekte (bis ca. 5 Jahre nach Anlage)

Unmittelbar nach Festlegung der Versuchsparzellen schließt sich die sogenannte Initialinventur an, die eine Quantifizierung der direkten Effekte der Renaturierungsmaßnahmen ermöglicht und die im weiteren Versuchsverlauf als Referenz für die folgende sukzessionale Entwicklung der Versuchsflächen dient (\(t = 0 \) Jahre). Im Zuge der Initialinventur sollten vordringlich sämtliche Parameter der Vorinventuren erfasst werden, um statistisch abgesicherte Referenzwerte für alle Parameter zu haben. Ausnahmen sind Parameter, die von den Renaturierungsmaßnahmen mit Sicherheit nicht unmittelbar beeinflusst werden, wie z.B. Daten zum Zustand des Mineralbodens oder Daten zum Oberstand in der Kontrollvariante (ohne Eingriff).

Phase IV: Mittelfristige Effekte (ca. 5–25 Jahre nach Anlage)

Mittelfrist-Indikatoren, d.h. Parameter die ca. 5 bis 25 Jahre nach Versuchsanlage auf die durch die Renaturierungsmaßnahmen ausgelösten Änderungen der Umweltbedingungen reagieren, sollten in Phase IV in einem ca. 5-jährigen Turnus erfasst werden. Hierzu zählen z.B. Bodenvegetation und Verjüngung (Veränderungen und Mortalität durch zunehmenden Lichtmangel), die Humusaufklage (Veränderungen durch modifizierten Streueintrag), durch die Versuchsanlage generiertes Totholz (Zersetzungsdynamik) sowie Veränderungen hinsichtlich des Wachstums und der Mortalität des Oberstands.

Phase V: Langfristige Effekte (Dauer unbegrenzt; ab ca. 25–30 Jahre nach Anlage)

In der letzten Phase, die ca. 25 bis 30 Jahre nach Versuchsanlage einsetzt, werden Langfrist-Indikatoren untersucht. Wichtige Parameter in dieser Phase sind beispielsweise Totholz (Zersetzungsfortschritt und Neuentstehung durch Mortalität), Verjüngung und Struktur des Zwischenstands (Etablierung neuer Bäume und soziodemographisches Umsetzen) sowie Bodenparameter
(Akkumulierung organischer Materials im Mineralboden). Aufgrund der vergleichsweise langsam ablaufenden Prozesse wird in dieser Phase eine Datenerfassung im 10jährigen Turnus ausreichend sein.

4.4.2 Zeitliche Staffelung der Versuchsanlage

Hinsichtlich der zeitlichen Planung der Versuchsdurchführung sind neben der Verfügbarkeit potenzieller Versuchsflächen (s. Abschnitt 6) insbesondere die maximale jährlich realisierbare Versuchsanlage und Datenerfassung (Vor-, Initial- und erste Folgeinventur) limitierend. Die geplante Versuchsanlage umfasst in ihrer Gesamtheit 640 ha Versuchsfläche (4 Lokalitäten x 4 Blöcke x 40 ha/Block). **Allein aufgrund der Versuchsflächengröße ist somit eine zeitliche Staffelung der Versuchsanlage unumgänglich.** Eine zeitgleiche Implementation von Behandlungsvarianten in allen Lokalitäten wäre zwar prinzipiell möglich, ist jedoch aufgrund der dafür erforderlichen Ressourcen nicht realisierbar. Eine zeitlich gestaffelte Versuchsanlage ist mit hohen logistischen Anforderungen verbunden, bietet aber im Hinblick auf einen effizienten Einsatz der personellen, maschinellen und finanziellen Ressourcen erhebliche Vorteile.

Darüber hinaus hat eine zeitliche Staffelung der Versuchsanlage auch aus versuchstechnischer Sicht Vorteile, die mit der interannuellen witterungsbedingten Variabilität einer Vielzahl von Versuchsparametern zusammenhängen.

Allerdings ist die zeitliche Staffelung der Versuchsanlage aus statistischer Sicht nicht trivial, da die o.g. interannuellen Schwankungen mit den eigentlichen Versuchs faktoren (Behandlungsvarianten, Randliniengradient) interagieren, und diese Interaktion je nach Lokalität unterschiedlich ausfallen kann. Auch wenn die kleinste Flächeneinheit (Parzelle) nach dem Zufallsprinzip ausgewählt wird, so können Festlegungen hinsichtlich der zeitlichen Staffelung zu erheblichen Bias und Auswertungsschwierigkeiten führen. Bei einer pro Jahr realisierbaren Versuchsfläche von 160 ha sollte unbedingt in jeder Lokalität jeweils 1 Versuchsblock pro Jahr angelegt werden. Das heisst konkret, dass jeweils 25% der Versuchsflächen inklusive Vorinventur in 4 konsekutiven Jahren initiiert werden sollte. Es ist noch abschließend zu klären, ob die Auswahl der jeweils anzulegenden Blöcke in den einzelnen Lokalitäten nach dem Zufallsprinzip erfolgen sollte oder ob es eine systematische Auswahl geben sollte, die sicherstellt, dass die in jedem Jahr angelegten Blöcke unterschiedliche Randlinienlängen aufweisen. In den nachfolgenden statistischen Auswertungen ist in jedem Fall das Jahr der Versuchsanlage als zufälliger Faktor zu berücksichtigen (s. Abschnitt 4.6.2).

4.5 Indikatoren, Messgrößen & Parameter

In den Übersichtsartikeln von NOSS (1999), SER (2004), RUIZ-JEAN & AIDE (2005) zur Erfassung des Erfolgs unterschiedlicher Renaturierungsmaßnahmen werden die folgenden, jedoch sehr theoretischen Kenngrößen als grundsätzlich messbare Attribute benannt:
(1) der Vergleich der Diversitäts- und Gesellschaftsstrukturen mit den Referenzsystemen,
(2) die Präsenz einheimischer Arten,
(3) die Präsenz funktioneller Gruppen, die für eine langfristige Stabilität notwendig sind,
(4) die ausreichende Kapazität physischer Umweltressourcen, um eine nachhaltige Reproduktion an Populationen zu gewährleisten,
(5) die normale Funktionsweise des betrachteten Systems,
(6) die Integration in das Landschaftsgefüge,
(7) die Abwehr potenzieller Bedrohungen für das System,
(8) die Resilienz gegenüber natürlichen Störungen,
(9) die eigene Nachhaltigkeit des Systems.

Die Erfassung all dieser Attribute stellt sich nicht nur aufgrund finanzieller und personeller Grenzen als problematisch dar. Mit Blick auf das jeweilige Waldökossystem und das Renaturierungsziel erscheinen diese Größen auch als vergleichsweise unspezifisch, d.h. insbesondere für die Formulierung fachspezifischer Aussagen müssen Indikatoren und Messgrößen präziser definiert werden.

Für das vorliegende Konzept eines langfristig angelegten Großexperiments in Kiefernwäldern ist noch einmal auf die Zielsetzungen des Abschnitts 3 zu verweisen, deren Umsetzung mit Hilfe geeigneter Indikatoren und Messgrößen zu prüfen sein wird. Dabei erweist sich der Faktor Zeit als eine wesentliche Einflussgröße bei der Auswahl geeigneter Indikatoren. Es wird einerseits davon ausgegangen, dass die etablierten Behandlungsvarianten (A bis D, s. Abschnitt 4.2) in zeitlicher Staffelung messbare Reaktionen zeigen. Andererseits reagieren bestimmte Organismengruppen innerhalb sehr unterschiedlicher Zeitfenster auf Umweltveränderungen, wie in Tabelle 7 verdeutlicht wird. Darüber hinaus ist zu berücksichtigen, dass im optimalen Fall der Zustand aller wichtigen Ökosystemkomponenten unmittelbar vor und nach dem Eingriff erfasst werden müsste, um überhaupt Aussagen über die weitere Entwicklung des Systems für alle Komponenten ableiten zu können. In der Realität sind jedoch die Erfassung von Vegetation (Diversität und Vegetationsstruktur), Oberbodenzustand und Strahlungsverfügbarkeit als realisierbare Kenngrößen anzusehen (vgl. auch Abschnitt 8.3).

Es ist davon auszugehen, dass die etablierten Behandlungsvarianten unmittelbar (kurzfristig) insbesondere auf abiotische Faktoren (z.B. Bestandesinnoklima, Niederschlag) wirken, die durch strukturelle Veränderungen im Bestandesgefüge beeinflusst werden. Für Organismen der Fauna entscheiden Faktoren wie (i) der Abhängigkeitsgrad von standörtlichen Veränderungen bzw. die Wirkung von Schlüsselfaktoren (z.B. Lichte oder Temperatur) und Habitatbindungen, (ii) der Mobilitätsgrad und (iii) die Entfernungen zum jeweils günstigen Mikrostandort (d.h. die bereits vorhandene Präsenz auf übergeordneter räumlicher Ebene) über den Zeitraum der Reaktion auf die Behandlungs-varianten. Die mittel- bis langfristige Präsenz auf den Teilflächen kann für relativ immobile Arten (z.B. Schnecken) nur gewährleistet werden, wenn alle Habitatansprüche, die zur erfolgreichen
Übersicht relevanter Messgrößen unter Berücksichtigung der zeitlichen Staffelung für prognostizierte Indikatorwirkungen (kurzfristig 1 ≤ 5 Jahre [k], mittelfristig > 5 ≤ 20 Jahre [m], langfristig > 20 Jahre [l]).

(*Die Abkürzungen möglicher Aufnahmeverfahren stehen für: TS=Transkriptstichprobe, PS=Plotstichprobe, V=Vollaufnahme.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mögliche Messgrößen</th>
<th>Zeithorizont d. Indikatorwirkung</th>
<th>mögliche Verfahren*</th>
<th>Auswahl an methodischen Veröffentlichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>epiphytische Flechten/Moos</td>
<td>Art, Abundanz</td>
<td>m, l</td>
<td>PS/TS/V [Sichtungen mit Totholz]</td>
<td>Hummelrey et al. 2002, Chantranaaram 2010</td>
</tr>
</tbody>
</table>

Sonnige abiotische Faktoren
Diesen Betrachtungen ist bereits zu entnehmen, dass der **Einflussfaktor Raum** eng mit der zeitlichen Komponente verknüpft ist. Neben den Distanzen, die für eine Besiedlung der etablierten Behandlungsvarianten zurückgelegt werden müssen, entscheiden räumliche Gradienten (Randlinienlängen bzw. Randlinieneffekte zwischen den Varianten, s. auch Abschnitte 3.2 und 4.3) und strukturelle Gegebenheiten (Mikrostandorte, Überschirmung etc.) über den Besiedlungserfolg von Flora und Fauna.

4.6 Statistische Grundprinzipien, Auswertungsansätze und Stichprobendesign

4.6.1 Statistische Grundprinzipien

Als Voraussetzung für skalenübergreifende und komplexe Auswertungen unterschiedlichster Parameter ist die Verwendung eines harmonisierten Stichprobendesigns und standardisierter Methoden der Datenerfassung für ein Großexperiment von integraler Bedeutung. Im Hinblick auf die Zielstellungen des Experiments und die formulierten Hypothesen sind insbesondere folgende statistische Grundprinzipien zu bedenken (SEYMOUR et al. 2006, GANIO & PÜTTMANN 2008):

- Eindeutige Definition der räumlichen und zeitlichen Skalen, auf denen Aussagen getroffen werden sollen,
- Definition von Indikatoren und der erforderlichen räumlichen und zeitlichen Replikation für jede Kombination von Projektzielen und räumlicher bzw. zeitlicher Skala sowie von räumlichen und zeitlichen Beprobungsansätzen für jeden Indikator,
• Minimierung von statistischen, durch das Versuchs- und Stichprobendesign bedingten Beschränkungen.

4.6.2 Auswertungsansätze

Insgesamt entspricht das Versuchsdesign einer balancierten Versuchsanlage mit den drei festen Faktoren 1) „Randlinienlänge“ (k = 4), 2) „Behandlung“ (b = 4) und 3) „Zäunung“ (z = 2). Durch die identische Anlage in den ausgewählten vier Lokalitäten (n = 4) ist jede Faktorenkombination vierfach repliziert.

Aufgrund der Komplexität des betrachteten Waldökosystems ist jedoch damit zu rechnen, dass o.g. lineare Modelle nur eine beschränkte Aussagekraft für die multiplen, nicht immer hierarchisch miteinander interagierenden Faktoren und Prozesse haben. Für die integrierende Analyse aller

Im Gesamtüberblick ergeben sich also für das Großexperiment die folgenden grundsätzlich unterschiedlichen Auswertungsansätze:

a) variantenbezogene Auswertung: Effekte der einzelnen Behandlungsvarianten
b) blockbezogene Auswertung: auf Block-Ebene integrierte Effekte der Randlinienlänge
c) integrierte Auswertung mit LLM und SEM: kombinierte Einflüsse von Faktoren auf die Arten- und Strukturdiversität auf unterschiedlichen Skalenebenen
d) räumlich explizite Auswertung: gradienten-, nachbarschafts- und einzelbaumbezogene Effekte

4.6.3 Stichprobendesign

Im Falle von 500 m x 800 m großen Versuchsblöcken empfiehlt sich beispielsweise die Anlage eines Grundrasters von 100 m x 125 m mit einer zweidimensionalen Verdichtung auf 50 m bzw. 62,5 m
(Abb. 20a, b; Tab. 8) und somit insgesamt 84 regulären SP je Block (ca. 1 SP je 0,48 ha Versuchsfläche). Bei zwei Blöcken werden zum Ausgleich von Ungleichverteilungen je 2 zusätzliche SP-Punkte integriert, damit sowohl die Behandlungsvarianten und als auch die sechs bivariaten Nachbarschaften repräsentativ erfasst werden. Eine Ausnahme ist hier der 4-Parzellen-Block, in dem 2 von 6 möglichen Nachbarschaften nicht realisierbar sind. Bei einer kreisförmigen SP-Fläche von 0,05 ha ($r = 12,62$ m) werden insgesamt ca. 10,5-10,75 % der Versuchsfläche eines Blocks beprobt. Je nach Parameter empfehlen sich u.U. Probekreise geringerer (z.B. Verjüngung) bzw. größerer Fläche (z.B. starke Altbäume).

Tab. 8.
Häufigkeiten der Nachbarschaften zwischen je zwei der vier Behandlungsvarianten für die einzelnen Versuchsblöcke

<table>
<thead>
<tr>
<th>Block</th>
<th>Σ-Anzahl SP in Kernzone</th>
<th>Anzahl SP je Nachbarschaften (davon im Zaun)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
<td>A-C</td>
<td>A-D</td>
</tr>
<tr>
<td>4 Parz.</td>
<td>4 x 18 (4 x 5)</td>
<td>4 (2)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>8 Parz.</td>
<td>4 x 16 (4 x 4)</td>
<td>4 (2)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>16 Parz.</td>
<td>4 x 12 (4 x 3)</td>
<td>6 (2)</td>
<td>6 (3)</td>
</tr>
<tr>
<td>32 Parz.</td>
<td>4 x 8 (4 x 3)</td>
<td>7 (2)</td>
<td>7 (3)</td>
</tr>
</tbody>
</table>

Entlang der Linien des Grundrasters können auf kleineren Plots Parameter erfasst werden, die eine höhere räumliche Datenauflosung erfordern (z.B. Bodenvegetation). Linienförmige (z.B. liegendes Totholz) und seltene Strukturen (z.B. stehendes Totholz) können entlang von Transekten aufgenommen werden, die mit randomisierter Ausrichtung in die SP des Grundrasters eingehängt sind. So können für verschiedene Parameter unterschiedliche Stichprobenintensitäten bei gleichzeitig eindeutigem Raumbzug umgesetzt werden.

Auch innerhalb der zur Quantifizierung des Einflusses verbleibenden Schalenwildes (vgl. Abschnitt 4.2.5) angelegten Zaunflächen sollte eine repräsentative Gleichverteilung der SP im Zaun in Bezug auf die Behandlungsvarianten und deren Nachbarschaften gegeben sein (Abb. 20a, b; Tab. 8). Bei einer maximalen Einzelzaunfläche von 2,5 ha beträgt die Gesamtzaunlänge je Block zwischen 2880–3390 m. Damit sind ca. 24,5-28,7% der Versuchsfläche in den einzelnen Blöcken eingezäunt.
Mögliche Anordnung von kreisförmigen Stichprobenpunkten nach einem systematischen Grundraster und Ausrichtung der Zäune (rot) in den vier verschiedenen Blöcken

Abb. 20a.

Varianten: A: grau B: rot C: orange D: gelb
Mögliche Anordnung von kreisförmigen Stichprobenpunkten nach einem systematischen Grundraster und Ausrichtung der Zäune (rot) in den vier verschiedenen Blöcken

Varianten: A: grau B: rot C: orange D: gelb
Koordination und Verwaltung des Großexperiments

5.1 Empfehlungen zur Projektstruktur

Dem Forscherteam beratend zur Seite gestellt ist idealerweise ein Wissenschaftlicher Beirat, in dem neben der DBU auch Vertreter der entsprechenden Bundesländer (Fachministerien), Gemeinden (Bürgermeister) sowie ausgewählte Wissenschaftler vertreten sein sollten. Der Wissenschaftliche Beirat ist verantwortlich für die strategische Zielstellung bzw. Vision des Großexperiments, für Verhandlungen mit den finanzierenden Institutionen sowie für politische und gesellschaftliche Aktivitäten. Darüber hinaus sollte der Wissenschaftliche Beirat für das Gesamtprojekt Direktionsrecht besitzen und die Zugangsmodalitäten für neue Arbeitsgruppen regeln.

Vor Ort ist das Großexperiment auf langfristig kontinuierlich tätige Versuchsflächenmanager ausgewiesen – eine Aufgabe, die beispielsweise die lokal zuständigen Förster der entsprechenden Bundesforstbetriebe übernehmen könnten. Kernaufgaben der Flächenmanager sind die Überwachung und
Sicherung der Versuchsflächen und die Einweisung und logistische Unterstützung des ausführenden wissenschaftlichen und technischen Personals. Aufgrund einer sinnvollen Einbindung in die Öffentlichkeitsarbeit vor Ort ist es von essenzieller Bedeutung, dass sich die Flächenmanager insbesondere durch Einfühlungsvermögen in die Belange der lokalen Bevölkerung und hervorragende kommunikative Fähigkeiten auszeichnen.

5.2 Versuchsflächenmanagement: Räumliche und zeitliche Leitplanung

Von ähnlich großer Relevanz wie die räumliche Planung ist die zeitliche Leitplanung für das Großexperiment. Hier geht es neben der Langfristigkeit und der Periodizität der Probenahme auch um Aspekte, die mit der Saisonaldität einzelner Untersuchungsparameter zusammenhängen. Während einige Parameter, wie z.B. Witterung oder Streufall, kontinuierlich erfasst werden, können beispielsweise Ökosystemkomponenten wie Bodenvegetation oder Insekten nur zu bestimmten Jahreszeiten und in relativ engen Zeitfenstern erhoben werden. Um die Vergleichbarkeit zu gewährleisten und die integrierende Datenanalyse zu ermöglichen, ist daher zwingend eine inhaltliche logische Abfolgeplanung einzelner Erhebungen und eine genaue zeitliche Abstimmung der Beprobungstermine erforderlich.

Das ambitionierte und anspruchsvolle Zeitmanagement wird in der nachfolgenden Darstellung ersichtlich, die beispielhaft einen möglichen Zeitplan für die Initiierung der Versuchsanlage in nur einer Liegenschaft für einen Gesamtzeitraum von 5 Jahren aufzeigt (Tab. 9):
Tab. 9.
Überblick über einen möglichen Zeitplan zur Anlage von 4 Versuchsblöcken (5 Jahre)

Voraussetzung: erfolgte Vorauswahl der Versuchsblöcke; die senkrechte fette Linie markiert den Zeitpunkt $t = 0$ für die Zählung der Zeit nach den Restorationsmaßnahmen

<table>
<thead>
<tr>
<th>Durchzuführende Arbeiten</th>
<th>Jahr 1</th>
<th>Jahr 2</th>
<th>Jahr 3</th>
<th>Jahr 4</th>
<th>Jahr 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vorbereitung der Versuchsflächen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Einmessung und Markierung der Parzellen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Inventurplanung und Erstellung der Aufnahmeanweisung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Vorinventur</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Waldstrukturdaten</td>
<td>X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Verjüngung, Streu- und Samenfall</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Bodenzustand und Bodenvegetation</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Insekten</td>
<td>X X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Implementierung der Behandlungsvarianten</td>
<td>X X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Zuordnung der Behandlungsvarianten zu den Parzellen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Entnahme der Oberstandes (Holzernte)</td>
<td>X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Pflanzung und Zaunbau</td>
<td>(X) X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Totholzschaffung (flächig und einzelnbaumweise)</td>
<td>(X) X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Initialinventur</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Waldstrukturdaten</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Verjüngung, Streu- und Samenfall</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Bodenvegetation</td>
<td>X X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Insekten</td>
<td>X X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Auswertung von Vor- und Initialinventur</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Auswertung der Inventurdaten</td>
<td>X X X X X (X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Quantifizierung der direkt durch die Implementierung der Behandlungsvarianten geschaffenen Strukturdiversität</td>
<td>(X) X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Folgeinventuren</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Verjüngung, Streu- und Samenfall</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Bodenvegetation</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Insekten</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Auswertung der Folgeinventuren (fortlfd.)</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Auswertung der Inventurdaten: Verjüngung</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Auswertung der Inventurdaten: Struktur, Streu/Samenfall</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Öffentlichkeitsarbeit (fortlfd.)</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>z.B. Führungen zu den Versuchsflächen</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3 Literatur- und Publikationsmanagement

5.3.1 Grundlagen der Literaturdatenbank

Für die Literaturdatenbank zum vorliegenden Projektkonzept „RenaKi“ lassen sich folgende Teilziele und Strukturansprüche ableiten:

(a) thematischer Einstieg in die drei wesentlichen Kerngebiete: 1. Kiefernwälder, 2. Großexperimente und 3. Renaturierung,
(b) mögliche Verknüpfungen der Kerngebiete mit Blick auf Interdisziplinarität über Schlüsselbegriffe und/oder „Mischkategorien“,
(c) Recherche bis hin zu differenzierten Detailangaben über eine Hierarchie der Schlüsselbegriffe,
(d) Erstellen einer digitalen Ablage mit identischer Struktur der Schlüsselbegriffe,
(e) Angaben der Schlüsselbegriffe in deutscher und englischer Sprache.

Tab. 10a.
Schlüsselbegriffe der ersten und zweiten hierarchischen Ebene in der Literaturdatenbank

<table>
<thead>
<tr>
<th>Hierarchische Ebene der Schlüsselbegriffe</th>
<th>1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiefernwälder</td>
<td>Pine forests</td>
<td>Kiefernart</td>
</tr>
<tr>
<td>Großexperimente</td>
<td>large-scale experiments</td>
<td>Bezeichnung des Großexperiments</td>
</tr>
<tr>
<td>Renaturierung</td>
<td>restoration</td>
<td>Übersichtsartikel</td>
</tr>
<tr>
<td>Zielformulierungen</td>
<td>objectives</td>
<td>Region & Klimazone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naturnähe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sukzession</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organisation & Verwaltung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design & Methoden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fachdisziplin/ Interdiszipl.</td>
</tr>
</tbody>
</table>
Tab. 10b.
Schlüsselbegriffe der dritten bis fünften hierarchischen Ebene in der Literaturdatenbank

<table>
<thead>
<tr>
<th>Hierarchische Ebene der Schlüsselbegriffe</th>
<th>Hierarchical level of key words</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4.</td>
</tr>
<tr>
<td>Indikatoren</td>
<td>Indicators</td>
</tr>
<tr>
<td>Offenland</td>
<td>open landscape</td>
</tr>
<tr>
<td>Gewässer</td>
<td>water bodies</td>
</tr>
<tr>
<td>Moore</td>
<td>bogs and fens</td>
</tr>
<tr>
<td>Wald</td>
<td>forest</td>
</tr>
<tr>
<td></td>
<td>Waldgesellschaft</td>
</tr>
<tr>
<td></td>
<td>Baumarten</td>
</tr>
<tr>
<td>Naturwald</td>
<td>natural forest</td>
</tr>
<tr>
<td>Naturnaher Wald</td>
<td>near-natural forest</td>
</tr>
<tr>
<td>Forst</td>
<td>plantation</td>
</tr>
<tr>
<td></td>
<td>Mischbaumarten</td>
</tr>
<tr>
<td></td>
<td>Potentielle Naturliche Vegetation</td>
</tr>
<tr>
<td>Zustand</td>
<td>status</td>
</tr>
<tr>
<td>Verlauf</td>
<td>progress</td>
</tr>
<tr>
<td>Mitarbeiter</td>
<td>staff</td>
</tr>
<tr>
<td>Datenverwaltung</td>
<td>data management</td>
</tr>
<tr>
<td></td>
<td>Datenbank</td>
</tr>
<tr>
<td></td>
<td>Kartenmaterial</td>
</tr>
<tr>
<td></td>
<td>Netzwerk</td>
</tr>
</tbody>
</table>
Fortsetzung der Tabelle 10b

<table>
<thead>
<tr>
<th>Datenverfügbarkeit</th>
<th>Standortdaten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>site data</td>
</tr>
<tr>
<td>Datenverfügbarkeit</td>
<td>Bestandesdaten</td>
</tr>
<tr>
<td></td>
<td>forest stand data</td>
</tr>
<tr>
<td>Datenverfügbarkeit</td>
<td>Daten zu Flora und Fauna</td>
</tr>
<tr>
<td></td>
<td>floral and faunal data</td>
</tr>
<tr>
<td>Datenverfügbarkeit</td>
<td>Luftbilder</td>
</tr>
<tr>
<td></td>
<td>aerial photographs</td>
</tr>
</tbody>
</table>

Pseudoreplikation

| Pseudoreplikation | pseudoreplication |

Orientierung am Landschaftsmosaik

<table>
<thead>
<tr>
<th>Orientierung am Landschaftsmosaik</th>
<th>Fragmentierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fragmentation</td>
</tr>
<tr>
<td>Randlinieneffekte</td>
<td>edge effects</td>
</tr>
<tr>
<td>Vernetzungsgrad</td>
<td>connectivity</td>
</tr>
<tr>
<td>Waldtextur</td>
<td>forest patterns</td>
</tr>
</tbody>
</table>

Behandlungsvarianten

<table>
<thead>
<tr>
<th>Behandlungsvarianten</th>
<th>Mosaikzerlegung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mosaic design</td>
</tr>
<tr>
<td>Blockzerlegung</td>
<td>block design</td>
</tr>
<tr>
<td>Stilllegung</td>
<td>set-aside</td>
</tr>
<tr>
<td>Rückbau</td>
<td>renaturisation</td>
</tr>
<tr>
<td>Artenzusammensetzung</td>
<td>species composition</td>
</tr>
<tr>
<td></td>
<td>Artenansiedlung</td>
</tr>
<tr>
<td></td>
<td>species (re)introduction</td>
</tr>
<tr>
<td></td>
<td>Artenverdrängung</td>
</tr>
<tr>
<td></td>
<td>species supression</td>
</tr>
<tr>
<td>Vegetationsstruktur</td>
<td>vegetation structure</td>
</tr>
<tr>
<td></td>
<td>Durchforstung</td>
</tr>
<tr>
<td></td>
<td>thinning</td>
</tr>
<tr>
<td></td>
<td>Brand</td>
</tr>
<tr>
<td></td>
<td>burning</td>
</tr>
</tbody>
</table>
Fortsetzung der Tabelle 10b

<table>
<thead>
<tr>
<th>Vegetationsstruktur</th>
<th>Mahd</th>
<th>Saat</th>
<th>Pflanzung</th>
<th>Totholz</th>
<th>Naturverjüngung</th>
</tr>
</thead>
<tbody>
<tr>
<td>vegetation structure</td>
<td>mowing</td>
<td>sowing/seed</td>
<td>planting</td>
<td>dead wood</td>
<td>natural regeneration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boden</th>
<th>Kalkung</th>
<th>Bodenbearbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>soil</td>
<td>liming</td>
<td>soil preparation/scarification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topographie & Relief</th>
<th>Abtrag</th>
<th>Aufschüttung</th>
</tr>
</thead>
<tbody>
<tr>
<td>topography & relief</td>
<td>removal of soil material</td>
<td>of soil material</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grundwasserstand</th>
<th>Absenkung</th>
<th>Anhebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>groundwater level</td>
<td>drawdown of water table</td>
<td>increase of water table</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messverfahren</th>
<th>Baumschicht</th>
<th>Bodenvegetation</th>
<th>Boden</th>
<th>Fauna</th>
<th>Klima</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement methods</td>
<td>tree layer</td>
<td>ground vegetation</td>
<td>soil</td>
<td>fauna</td>
<td>climate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventurverfahren</th>
<th>Probekreisverfahren</th>
<th>Linien- und Transektverfahren</th>
<th>Stichprobenverteilung</th>
<th>Umfragen</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampling design</td>
<td>circular plot sampling</td>
<td>line and transect sampling</td>
<td>sample distribution</td>
<td>survey</td>
</tr>
</tbody>
</table>
Auswertungsverfahren

- **Klassische Datenanalyse** (classical data analysis)
- **Explorative Datenanalyse** (exploratory data analysis)
- **Vergleichende Datenanalyse** (comparative data analysis)
- **Zeitreihenanalyse** (time series data analysis)
- **Räumliche Datenanalyse** (spatial data analysis)
- **Diversitätsindizes** (diversity indices)
- **Modellierung** (modeling)

Zoologie
- **Ornithologie** (ornithology)
- **Entomologie** (entomology)
- **Wildökologie** (wildlife ecology)

Vegetationskunde
- **Pflanzenphysiologie** (plant physiology)
- **Pflanzensoziologie** (plant sociology)

Mykologie
- **Bodenkunde** (soil science)
- **Waldschutz** (forest protection)
- **Naturschutz** (nature conservation)

Klimatologie
- **Hydrologie** (hydrology)
- **Waldbau** (silviculture)
- **Umweltpolitik** (environmental policy)
- **Forsttechnik** (forest engineering)

5.3.2 Recherchemöglichkeiten innerhalb der Literaturdatenbank

Die erstellte Literaturdatenbank umfasst gegenwärtig 343 Einträge, die sich, wie in Abbildung 21 erkennbar, auf die erste und zweite hierarchische Ebene aufteilen. Eine Zuordnung zu mehreren Kategorien der ersten Ebene ist möglich, d.h. wenn sich beispielsweise eine Veröffentlichung findet, die sich mit der großräumigen Renaturierung eines Kieferngebietes befasst, kann diese allen drei Kategorien zugeordnet sein (z.B. Tomback et al. 2001, Friederici 2003).

dieser Einzelwortsuche können beliebige Kombinationen zur Suche (Autor + Jahr + Titel usw.) genutzt werden.

Die Einträge enthalten zunächst einen Vermerk zur Art der Referenz (reference type), d.h. es wird differenziert nach Büchern, Buchbeiträgen, Artikeln, Projektberichten, Tagungsbeiträgen etc. Die vollständige Gliederung der Einträge ist beispielhaft in der nachfolgenden Abbildung 22 dargestellt.

Abb. 22. Beispielhafte Darstellung der Eingabemaske in der EndNote® Literaturdatenbank

5.4 Datenmanagement

Abb. 23. Beispielhafte Darstellung für eine Verknüpfung in der EndNote® Literaturdatenbank

Bereits zu Projektbeginn sollte ein umfassendes Konzept zur Sicherung der Datenqualität entwickelt werden. Wesentliche Maßnahmen dieses Konzepts sind z.B.

- die vollständige Erfassung von Metadaten zu den einzelnen Versuchsflächen, Parametern (Aufnahmemethodik, Messanweisungen und -protokolle) und Arbeitsgruppen,
- die Erstellung detaillierter parameterspezifischer Aufnahmeanweisungen und übersichtlicher Formulare zur Datenerhebung,
- die Entwicklung von Algorithmen zur Datenüberprüfung in Hinblick auf Vollständigkeit und Konsistenz,
- die Verwendung von Feldcomputern mit digitalen Eingabemasken, wenn dies realisierbar ist,
- sowie die Durchführung von Testläufen zur Identifizierung von potenziellen Fehlerquellen.

Die Kombination interdisziplinärer Daten mit unterschiedlicher zeitlicher und räumlicher Auflösung stellt eine große Herausforderung für die Datenverwaltung des Großexperiments dar. Hier ist die eindeutige Definition von Schnittstellen (z.B. Messpunkt, Raster-Koordinate, Quadrant, Transsekt, Plot, Datum, usw.) zwischen den einzelnen Teildatensätzen zentrales Anliegen zur Gewährleistung der Verschneidung und einer nachfolgenden integrierenden Auswertung der Messdaten. Empfehlenswert ist die Einbindung aller Datensätze in ein projektinternes GIS-System auf Basis möglichst genau einzumessender Koordinaten, bzw. Winkel und Entfernung zu definierten und auf der Versuchsfläche sichtbar markierten Ankerpunkten.
6 Versuchsflächenauswahl

Abb. 24.
Lage der für eine Erkundung von der DBU vorausgewählten Lokalitäten (Quelle: DBU)

6.1 Auswahl der Lokalitäten

Bedingt durch die vorherige militärische Nutzung der DBU-Naturerbeflächen sind diese als ehemalige Bestandteile verschiedener Bundesforstbetriebe in verschiedenen Liegenschaften organisiert, die im Kontext des RenaKi-Projekts als sogenannte Lokalitäten bezeichnet werden. Aus den insgesamt 33 Naturerbe-Liegenschaften wurden zu Projektbeginn durch die DBU insgesamt 6 Lokalitäten für eine genauere Erkundung vorausgewählt (Abb. 24; Tab. 11). Diese Lokalitäten

- bilden einen Nord-Süd-Gradienten im Alt- und Jungpleistozän des Nordostdeutschen Tieflands ab,
- haben einen hohen Waldanteil (>70 %),
- weisen großflächige, zusammenhängende Waldflächen auf, die aktuell überwiegend mit struktur- und artenarmen Kiefernbeständen bestockt sind,
- integrieren zusätzlich kleinere historisch alte Waldstandorte mit naturnaher Bestockung (klassifiziert als Waldbehandlungskategorie „N“),
- und zeichnen sich durch eine geringe Kampfmittel-/Munitionsbelastung aus, was für die Sicherheit des Personals bei der Anlage und Betreuung der Versuchsflächen wichtig ist.

<table>
<thead>
<tr>
<th>Lokalität</th>
<th>Ückermünder Heide</th>
<th>Rüthnicker Heide</th>
<th>Weißhaus</th>
<th>Prösa</th>
<th>Zschornoer Wald</th>
<th>Daubaner Wald</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundesland</td>
<td>Mecklenb.- Vorp.</td>
<td>Brandenburg</td>
<td>Brandenburg</td>
<td>Brandenburg</td>
<td>Brandenburg</td>
<td>Sachsen</td>
</tr>
<tr>
<td>Gesamtfläche (ha)</td>
<td>7771</td>
<td>3871</td>
<td>1107</td>
<td>3310</td>
<td>1859</td>
<td>3626</td>
</tr>
<tr>
<td>Waldfläche (ha)</td>
<td>6570</td>
<td>2704</td>
<td>1057</td>
<td>3098</td>
<td>1606</td>
<td>2886</td>
</tr>
<tr>
<td>Waldfläche (%)</td>
<td>85</td>
<td>70</td>
<td>95</td>
<td>94</td>
<td>86</td>
<td>80</td>
</tr>
<tr>
<td>Dominanter pnV-Typ*</td>
<td>L, M</td>
<td>L</td>
<td>P, L</td>
<td>P</td>
<td>P</td>
<td>H, P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liegenschaft</th>
<th>Revier</th>
<th>FBK_Baumarten analog</th>
<th>FBK_Baumarten PDF</th>
<th>FBK_Baumarten GIS</th>
<th>Standortskarte analog</th>
<th>Standortskarte PDF</th>
<th>Standortskarte GIS</th>
<th>Luftbilder GIS (WMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prösa</td>
<td>Prösa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dreieichen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Daubaner Wald</td>
<td>Dauban</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halbendorf</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Zschornoer Wald</td>
<td>Zschornoer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wald</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Weißhaus</td>
<td>Silberbrunnen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rüthnicker Heide</td>
<td>Neukammer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birkholzgrund</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ückermün- der Heide</td>
<td>alle</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

6.2 Kriterien für die Versuchsflächenauswahl

Für einige Kriterien (Ausschlusskriterien) wurden Ausprägungen definiert, die zu einem definitiven Ausschluss einer Fläche führten. Beispielsweise sind hier die flächige Präsenz von Mischbaumarten, das Vorkommen von Spätblühender Traubenkirsche (Prunus serotina) oder Adlerfarn (Pteridium aquilinum) sowie eine bereits erfolgte unregelmäßige Auflichtung des Oberstands zu nennen, da unter diesen Umständen die statistisch abgesicherte Erfassung der Auswirkungen von experimentellen Behandlungsmaßnahmen nicht von etwaigen ereignisbedingten Effekten vor Versuchsanlage zu trennen wäre. Die restlichen Kriterien dienten vor allem einer beschreibenden Charakteri-
sierung der potentiellen Versuchsflächen und – in einem zweiten Schritt – als Grundlage einer Priorisierung der vorausgewählten Versuchsflächen hinsichtlich Ähnlichkeit und Homogenität.

Tab. 13.
Übersicht über die der Versuchsflächenauswahl zugrunde liegenden Kriterien

<table>
<thead>
<tr>
<th>Kriterien- gruppe</th>
<th>Kriterien</th>
<th>Idealzustand</th>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fläche</td>
<td>Größe</td>
<td>Blöcke von 50-200 ha</td>
<td>Fläche <50 ha</td>
</tr>
<tr>
<td></td>
<td>Fragmentierung</td>
<td>keine öffentlichen Straßen und stark ausgebauten Waldwege</td>
<td>angrenzende frequent. Wege und Siedlungen</td>
</tr>
<tr>
<td>Standort</td>
<td>(Stamm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standortsformengruppe, (Nährkraft/Wasserhaushalt), Bodenart</td>
<td>Z1-3 und A1-3; sandiges Substrat; Standortshomogenität (>95%)</td>
<td></td>
</tr>
<tr>
<td>Oberstand</td>
<td>Hauptbaumart</td>
<td>Pinus sylvestris</td>
<td>andere Baumarten</td>
</tr>
<tr>
<td></td>
<td>Bestandesalter</td>
<td>50-100 Jahre; möglichst geringe Alterspanne</td>
<td><50 und >100 Jahre; Ungleichaltrigkeit</td>
</tr>
<tr>
<td></td>
<td>Vertikale Struktur/ Schichtung</td>
<td>einschichtig; wenige Sonderstrukturen</td>
<td>flächiges Vorkommen einer 2. Bestandesschicht</td>
</tr>
<tr>
<td></td>
<td>Baumartenmischung</td>
<td>Mischungsanteil Birke max. 20%, einzelne standortsheimische Baumarten (EI, BU); keine/wenige nicht standortsheimischen Baumarten (z.B. LÄ, Fl, DG, etc.)</td>
<td>Mischungsanteile BI >20%; EI/BU >5%; LÄ, Fl, DG, etc. >5%</td>
</tr>
<tr>
<td></td>
<td>Kronenschlussgrad</td>
<td>mind. 80%; möglichst homogen; nur vereinzelte Lücken (<5%)</td>
<td>unregelmäßig durchforstete Flächen</td>
</tr>
<tr>
<td></td>
<td>Randeffekte</td>
<td>möglichst keine direkten Randbereiche zu Offenland etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vitalität</td>
<td>gute Vitalität; keine Kalamitätsflächen</td>
<td>Schadflächen (Insekten, o.ä.)</td>
</tr>
<tr>
<td></td>
<td>Qualität/Herkünfte, Bonität</td>
<td>ohne Bedeutung</td>
<td></td>
</tr>
<tr>
<td>Unterstand und Bodenvegetation</td>
<td>Totholz</td>
<td>nicht überproportional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naturverjüngung</td>
<td>bedingt akzeptabel (nur gebietsheimische Baumarten)</td>
<td>Präsenz Spätblühender TKI; Vorkommen heterogener Verjüngungskegel</td>
</tr>
<tr>
<td></td>
<td>Kunstverjüngung (Pflanzung/Saat)</td>
<td>unerwünscht; bei sonstiger Eignung vermerken (evtl. für Zerstörungsvarianten)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bodenvegetation</td>
<td>keine verjüngungshemmende Vegetation; Dominanz vermerken (z.B. Adlerfarn oder Calamagrostis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verbiss-Situation</td>
<td>vermerken, ohne Bedeutung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenz von Neophyten</td>
<td>idealerweise kein Vorkommen</td>
<td></td>
</tr>
<tr>
<td>Bestandes- behandlung</td>
<td>Aufschluss/ Feinerschließung</td>
<td>keine starke Befahrung; reguläres Gassennetz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>letzte Durchforstung</td>
<td>>2 Jahre vor Versuchsanlage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durchforstungsart</td>
<td>möglichst homogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bodenbearbeitung</td>
<td>nicht erwünscht</td>
<td></td>
</tr>
</tbody>
</table>
6.3 Prozess der Versuchsflächenauswahl

Im GIS (Quantum GIS 1.7.3) wurden für jede bereiste Lokalität die vollständig oder teilweise geeigneten forstlichen Teilflächen ausgewählt und in mehreren Arbeitsschritten flächig zusammenhängende Versuchsblöcke ausgewiesen:

- Delinierung und Digitalisierung der Außengrenzen zusammenhängender geeigneter Flächen,
- Ausweisung einer 70 m breiten Pufferzone innerhalb der Außengrenzen und der dadurch entstandenen Kernzone,
- Digitalisierung und Ausweisung ungeeigneter Versuchsflächen innerhalb der Kernzone, die keine versuchsrelevanten Auswirkungen auf benachbarte Bereiche haben (z.B. junge Kiefernbestände, Birkenbestände, etc.),
- Ausweisung von vier 50-ha-Versuchsblöcken innerhalb der Kernzone unter Berücksichtigung einer Pufferzone von mindestens 30 m zwischen den Versuchsblöcken,
- Erstellung von Übersichtskarten für die einzelnen Lokalitäten.

6.4 Potenziell geeignete Versuchsflächen

In nur vier der sechs bereisten Lokalitäten wurden ausreichend große und zusammenhängende potenzielle Versuchsflächen gefunden (vgl. Abb. 25):

- „Rüthnicker Heide“ (Brandenburg): 4 x 50 ha
- „Weißhaus“ (Brandenburg): 4 x 50 ha
- „Zschornoer Wald“ (Brandenburg/Sachsen): 2 x 50 ha
- „Ückermünder Heide“ (Mecklenburg-Vorpommern) 3 x 50 ha und 1 x 42 ha

Im „Daubaner Wald“ waren nur knapp 44 ha geeignet, die allerdings erhebliche Kiefern- und Birken-Naturverjüngung auf den Gassen aufwiesen und für die bereits der Zuschlag für einen Holzeinschlag im Januar 2013 vergeben worden war. In „Prösa“ waren aufgrund der bereits fortgeschrittenen

\(^1\)Sachsenatlas (http://www.atlas.sachsen.de/); GeoPortal Mecklenburg-Vorpommern/GAIA-MVlight (https://www.geoportal-mv.de/land-mv/GeoPortalMV_prod/de/Startseite/index.jsp); Brandenburg Viewer (http://www.geobasis-bb.de/bb-viewer.htm);

Abb. 25.
Übersicht über die potenziell geeigneten Versuchsblöcke (grüne Schraffur) in den vier Liegenschaften (siehe auch ganzseitige Detailkarten im Anhang 11.1)
7. Kooperationen, Partner, Netzwerke und Öffentlichkeitsarbeit

Der nachfolgende Abschnitt soll Optionen für das geplante Großexperiment aufzeigen, die sich aus dem Erfahrungsschatz bekannter Großprojekte ableiten. Folgende Kernpunkte sind für den Erfolg von Großprojekten besonders relevant:

1. Rechtzeitige Einbindung und Vernetzung aller unmittelbaren Akteure und indirekt betroffenen Gruppen (Institutionen, Organisationen, Personen),
2. Absicherung dauerhaft präsenter Organisations- und Finanzierungspartner,
3. Transparente Dokumentation von Maßnahmen und gewonnenen Daten,
4. Option zur Netzwerkerweiterung und Einbindung neuer Akteure.

7.1 Einbindung und Vernetzung von Akteuren

findet. Dabei ist bedeutsam, dass der Informationsfluss sowohl auf „bilateraler“ als auch „multi-

Im Landeswaldgesetz des Landes Brandenburg ist bspw. formuliert: „Zur nachhaltigen, pfleglichen und sachgemäßen Bewirtschaftung des Waldes gehört insbesondere […], 2. die Erhaltung und Entwicklung von stabilen Waldökossystemen, die in ihrem Artenspektrum, in ihrer räumlichen Struktur sowie in ihrer Eigendynamik den natürlichen Waldgesellschaften nahe kommen, […]“ (LWaldG; §4 Ordnungsgemäße Forstwirtschaft, Abs.(3)).

7.2 Organisation und Finanzierung

<table>
<thead>
<tr>
<th>Arizona Game and Fish</th>
<th>Greater Flagstaff Economic Council</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona Public Service</td>
<td>Highlands Fire Department</td>
</tr>
<tr>
<td>Arizona State Lands Department—Fire Management Division</td>
<td>Indigenous Community Enterprises</td>
</tr>
<tr>
<td>City of Flagstaff</td>
<td>NAU School of Forestry</td>
</tr>
<tr>
<td>Coconino County</td>
<td>NAU College of Engineering and Technology</td>
</tr>
<tr>
<td>Coconino County Farm Bureau and Cattle Growers Association</td>
<td>Perkins Timber Harvesting</td>
</tr>
<tr>
<td>Coconino Natural Resource Conservation District</td>
<td>Practical Mycology</td>
</tr>
<tr>
<td>Coconino Rural Environment Corps</td>
<td>Society of American Foresters—Northern Arizona Chapter</td>
</tr>
<tr>
<td>Cocopai Resource Conservation and Development District</td>
<td>Southwest Environmental Consultants</td>
</tr>
<tr>
<td>Ecological Restoration Institute at Northern Arizona University (NAU)</td>
<td>The Arboretum at Flagstaff</td>
</tr>
<tr>
<td>Flagstaff Chamber of Commerce</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>Flagstaff Native Plant & Seed</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>Grand Canyon Trust</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 14.
Liste der 25 Hauptkooperationspartner im GFFP (www.gffp.org)
Darüber hinaus wurde im GFFP ein Aufsichtsrat eingerichtet, der über die Mittelverwendung und die Realisierung konkreter Projektvorschläge entscheidet. Die Aufsichtsratsmitglieder sind auch zu großen Teilen für die Kofinanzierung des Forschungsprojekts verantwortlich, wobei auch zahlreiche Privatpersonen als zahlende Mitglieder der Vereinigung zur finanziellen Unterstützung des Projekts beitragen. Die Finanzierung setzt sich aus Gründungszuschüssen, staatlichen Zuschüssen, Unterstützungen für Kooperationen, Spenden, Mitgliedsbeiträgen und sonstigen Einnahmen zusammen. Die jährlichen Einnahmen zur Umsetzung des dauerhaften Monitorings auf den Versuchsflächen belaufen sich auf etwa 200.000 $. Ein weiteres Beispiel für die Finanzierung von Dauerversuchsflächen im Rahmen einer Landschaftsstudie betrifft die „Blue River Landscape Study (BLRS)“. Die jährliche Finanzierung beläuft sich hier auf etwa 170.000 $. In beiden Fällen wurden zusätzlich dauerhafte Institutionen eingerichtet, die Forschungspersonal zur Koordination des Projektes anstellen.

SEYMOUR et al. (2006) bestätigen in ihrem historischen Abriss zu Großexperimenten in den USA Etablierungskosten zwischen 120.000 $ bis 1.000.000 $. Die Angaben zur Finanzierung der jährliche Messkampagnen in den Dauerversuchsanlagen liegen zwischen 7.500 $ und 300.000 $.

7.3 Transparente Projektdokumentation und Organisationsstruktur

^1[http://noltfox.metla.fi/]

7.4 Öffentlichkeitsarbeit

Deshalb muss eine besondere Herausforderung für die projektspezifische Öffentlichkeitsarbeit darin gesehen werden, eine allgemein verständliche Umsetzung der ökosystemaren Zusammenhänge und der komplexen Forschung auf eine den Adressaten zuverlässige Ebene sicherzustellen. Andererseits gilt es auch, die Neugier auf Naturphänomene in Kiefernreinbeständen zu wecken und die Naturerbflächen als wertvollen Lebensraum sowie als Aktions- und Lernwelt erkennbar zu machen.

Eine adäquate kontinuierliche Öffentlichkeitsarbeit, auch flankiert von entsprechender politischer Lobbyarbeit, sollte sowohl die unmittelbar beteiligten Akteure auf allen Ebenen umfassen, als auch die lokale Bevölkerung in ausreichendem Maße einbeziehen. Das gilt gleichermaßen für

- das Erstellen von Pressemeldungen,
- Führungen zu den Versuchsflächen,
- den Kontakt zu den Verbänden und Organisationen, vor allem im forst- und waldwirtschaftlichen Bereich und dem Naturschutz,
• die Bearbeitung telefonischer und schriftlicher Anfragen von Journalisten sowie die Vermittlung von Interviews,
• die Beobachtung und Auswertung von Tageszeitungen, Pressediensten, landwirtschaftlichen Wochenblättern und anderem Informationsmaterial einschließlich Themensuche,
• die Beobachtung des Landfunks, Kontakt zu den Landfunkredaktionen und die regelmäßige Belieferung einzelner Rundfunkanstalten mit speziellem Informationsmaterial.

Zur Gewährleistung eines ausreichenden Informationsflusses empfehlen die Kollegen in den USA nach ihrer bisherigen Erfahrung die rechtzeitige Ankündigung von Maßnahmen in der regionalen Presse, die Installation anschaulicher Informationstafeln und die Einrichtung von Demonstrationsbeständen (RIBE & SILVAGGIO 2002). Im Rahmen des „Greater Flagstaff Forests Partnership“ (GFFP)-Projekts wurden beispielsweise nahe Flagstaff, Arizona so genannte „tele-forests“ eingerichtet, die auf kleiner Fläche alle Behandlungsvarianten präsentieren und interessierten Besuchern Tuchfühlung mit der Versuchsanlage ermöglichen. Die freie Informationsgabe unmittelbar auf der Fläche soll anhand der folgenden Abbildungen verdeutlicht werden und steht exemplarisch für die Eindrücke, die während der Forschungsaufenthalte in den USA gewonnen wurden.

Abb. 26. Beispiele für eine öffentlichkeitswirksame Beschilderung der Experimentalflächen in den USA
7.5 Öffentlichkeitsarbeit im Projekt RenaKi

8 Kalkulation des Finanzierungsbedarfs für das vorgestellte Großexperiment

8.1 Allgemeines

Tab. 15. Gesamtüberblick über die Kosten der Versuchsanlage sowie der Basis-Inventuren

<table>
<thead>
<tr>
<th>KOSTENART & POSITION</th>
<th>JAHR 1</th>
<th>JAHR 2</th>
<th>JAHR 3</th>
<th>JAHR 4</th>
<th>JAHR 5</th>
<th>KOSTEN</th>
<th>ERTRAG*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Personal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koordinator E13, 100%</td>
<td>60.000</td>
<td>60.000</td>
<td>60.000</td>
<td>60.000</td>
<td>60.000</td>
<td>300.000</td>
<td></td>
</tr>
<tr>
<td>Doktorand E13, 65%, Jahr 3.5</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
<td>120.000</td>
<td></td>
</tr>
<tr>
<td>Techniker E69, 100%</td>
<td>44.000</td>
<td>44.000</td>
<td>44.000</td>
<td>44.000</td>
<td>44.000</td>
<td>176.000</td>
<td></td>
</tr>
<tr>
<td>Wissenschaftliche Hilfskräfte</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106.000</td>
<td>106.000</td>
<td>146.000</td>
<td>146.000</td>
<td>102.000</td>
<td>606.000</td>
<td>0 €</td>
</tr>
<tr>
<td>2. Versuchsanlage & Basis-Inventuren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorinventur (je 4 Blöcke/Jahr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waldstrukturdaten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180.000</td>
</tr>
<tr>
<td>Verjüngung, Streu- und Samenfall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.000</td>
</tr>
<tr>
<td>Versuchsanlage (je 4 Blöcke/Jahr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.360.000</td>
</tr>
<tr>
<td>Pflanzung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>288.000</td>
</tr>
<tr>
<td>Sturmwaldsimulation</td>
<td>34.000</td>
<td>34.000</td>
<td>34.000</td>
<td>34.000</td>
<td>34.000</td>
<td>136.000</td>
<td></td>
</tr>
<tr>
<td>Zauneinschlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>316.000</td>
</tr>
<tr>
<td>Initialinventur (je 4 Blöcke/Jahr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waldstrukturdaten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120.000</td>
</tr>
<tr>
<td>Verjüngung, Streu- und Samenfall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.000</td>
</tr>
<tr>
<td>Folgeinventuren (jährlich für 5 Jahre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.000</td>
</tr>
<tr>
<td>Verjüngung, Streu- und Samenfall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.000</td>
</tr>
<tr>
<td></td>
<td>50.000</td>
<td>267.000</td>
<td>269.000</td>
<td>271.000</td>
<td>223.000</td>
<td>1.080.000</td>
<td>-1.360.000</td>
</tr>
</tbody>
</table>

GESAMTSUMME 156.000 € 373.000 € 415.000 € 417.000 € 325.000 € 1.686.000 € -1.360.000 €

* Holzeinschlagkostenfreier Erlös aus dem Holzeinschlag auf den Versuchsflächen (nicht Teil der Summen)

Im Folgenden wird ein Überblick über die Kosten der Versuchsanlage für einen Zeitraum von 5 Jahren gegeben, getrennt nach Personalkosten und Sachkosten (Tab. 15). Dabei wurde der in Abschnitt 5.2 vorgestellte Zeitplan zugrunde gelegt, d.h. es wurde von der Installation von 4 Versuchsblöcken je Jahr ausgegangen, unabhängig davon in welcher Lokalität diese zu finden sind. Die Kalkulation beinhaltet die Vor- und Folgeinventuren der Basisdaten, d.h. die Kosten für die Erhebung der Waldstrukturdaten sowie der Daten zu Verjüngung, Streu- und Samenfall. Es ist darüber hinaus wichtig, dass Inventuren zum Bodenzustand (innerhalb der 5 Jahre nur Vorinventur), Boden-
vegetation und Insekten (Vor-, Initial- und jährliche Folgeinventuren) erfolgen, die durch Projekt-
partner des Kern-Forscherteams zu kalkulieren, durchzuführen und durch entsprechende
finanzielle Mittel abzusichern sind.

8.2 Personalkosten

8.2.1 Projektkoordination

Für die Realisierung des vorgestellten Großexperiments ist ab Projektbeginn durchgängig ein in
Vollzeit angestellter Projektkoordinator erforderlich. Insbesondere für den Zeitraum der Vorinven-
turen und Versuchsanlage, d.h. während der ersten 5 Jahre (s. Abschnitt 5.2), ist im Hinblick auf die
dem Projektkoordinator obliegende Verantwortung personelle Kontinuität zu gewährleisten. Die
Personalkosten für die entsprechende Stelle belaufen sich je nach Berufserfahrung der Person z. Zt.
auf ca. 60.000 €/Jahr (TV-L E13, 100 %), d.h. für den 5-Jahreszeitraum auf ca. 300.000 € (vorbehaltlich
Tarifsteigerungen).

8.2.2 Technisches und wissenschaftliches Personal

Die Einstellung eines Technikers in Vollzeit ist für die ersten 4 Jahre der Versuchsanlage unerlässlich
(ca. 44.000 €/Jahr). Die Aufgaben des Technikers umfassen die Einmessung der Versuchsflächen und
Parzellen auf allen Liegenschaften, die Einmessung und Markierung der zu zäunenden Flächen, die
Markierung von Plots und Transekten zur Datenerfassung, die Installation von Messtechnik, die
Unterstützung der Versuchsflächenmanager sowie in Zusammenarbeit mit wissenschaftlichen Hilfs-
kräften die Durchführung der Waldverjüngungsinventur inklusive Erfassung von Streu- und Samen-
fall. Nach erfolgreicher Anlage aller Versuchsblöcke werden die Waldverjüngungsinventur und die
Erfassung des Streu- und Samenfalls sowie deren gestaffelte Auswertung von einem Doktoranden
übernommen (E13, 65 %, ca. 40.000 €/Jahr).

8.3 Sachkosten und Aufwendungen

8.3.1 Waldstrukturdatenerhebung

Die Waldstrukturdatenerhebung schafft in Zusammenhang mit Bodendaten die Datenbasis des
Großexperiments, da der Einfluss der Renaturierungsmaßnahmen auf die Biodiversität grundsätzlich
nur im Hinblick auf die durch die Maßnahmen geschaffene Strukturvielfalt analysiert und evaluiert
werden kann. Im Zuge der Waldstrukturdatenerhebung werden Parameter zur Beschreibung der
Baumschicht (z.B. Baumart, Höhe, BHD, etc.) mit seiner horizontalen und vertikalen Variabilität sowie
zum stehenden und liegenden Totholz erfasst, die zur Interpretation der potenziell als Indikatoren
geeigneten Parametergruppen (z.B. Verjüngung, Bodenvegetation, Insekten, u.a.) dienen. Vor Imple-
mentierung der Behandlungsvarianten ist eine Vorinventur durchzuführen, auf deren Grundlage eine
geleichmäßige Zuordnung der Behandlungsvarianten zu den Parzellen stattfinden kann (s.o. Ab-
schritt 3.1). An die Renaturierungsmaßnahmen schließt sich unmittelbar die Initialinventur an, die es
ermöglicht den direkten Einfluss der Maßnahmen zu quantifizieren und die als Referenz für die
sukzessionale Entwicklung dient.

Die Kosten für die Vorinventur für insgesamt 4 Versuchsblöcke belaufen sich inkl. Übernachtungs- und Reisekosten sowie MWSt. auf ca. 45.000 € je Inventur (ca. 129 €/Stichprobenpunkt). Dies umfasst die Vermarkung der durch die Versuchsflächenmanager eingemessenen Stichprobenpunkte bzw. deren Neuvermarkung. Weil der Arbeitsaufwand sinkt (die Nullvariante wird nicht erneut gemessen und bereits erfasste Objekte werden nur überprüft) ist die Initialinventur nur mit ca. 30.000 € (ca. 105 €/Stichprobenpunkt) zu kalkulieren. Unterschiedliche Geländebedingungen können jedoch Abweichungen von den kalkulierten Sätzen bewirken.

Tab. 16. Übersicht der Waldstrukturdatenerhebung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Vorinventur</th>
<th>Initialinventur</th>
<th>Folgeinventur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebende Bäume (Ober- und Zwischenstand; Höhe >1,3 m)</td>
<td>Azimut, Entfernung, Baumart, BHD</td>
<td>alle Varianten</td>
<td>nicht Nullvariante, Objekte überprüfen</td>
</tr>
<tr>
<td></td>
<td>Baumhöhe, Kronenansatz</td>
<td>alle Varianten, nur ausgewählte Bäume</td>
<td>nicht Nullvariante, nicht erfasste Bäume messen</td>
</tr>
<tr>
<td>Stehendes Totholz</td>
<td>Azimut, Distanz, Baumart, BHD, Höhe, Zerfallsklasse</td>
<td>alle Varianten, nur wenige Objekte zu erwarten</td>
<td>nicht Nullvariante, Objekte prüfen, neue Objekte messen</td>
</tr>
<tr>
<td>Liegendes Totholz</td>
<td>Durchmesser, Baumart, Zerfallsklasse, Position</td>
<td>alle Varianten, nur wenige Objekte zu erwarten</td>
<td>nicht Nullvariante, Objekte prüfen, neue Objekte messen</td>
</tr>
</tbody>
</table>

1 Innerhalb des kalkulierten 5 Jahreszeitraums ist keine Folgeinventur erforderlich (erste Folgeinventur 5 Jahre nach Implementierung der Renaturierungsmaßnahmen). Die Kosten für eine Folgeinventur belaufen sich ebenfalls auf ca. 45.000 €.

8.3.2 Verjüngung, Streu- und Samenfall

8.3.3 Holzeinschlag

8.3.4 Pflanzung

Auf den Flächen der Behandlungsvariante B folgt auf die flächige Entnahme von ca. 30% des stehenden Vorrats die flächige Pflanzung (Voranbau) von Eiche und Buche in einzelbaumweiser Mischung mit einer Dichte von 1000 Pflanzen je Hektar (Pflanzverband 3,3 x 3,3 m). Die Kosten dafür belaufen sich bei angenommenen Pflanzenkosten von 0,80 €/Pflanze (Sortiment 2+0; Pflanzenhöhe 15-20 cm) und Pflanzungskosten von 1,00 €/Pflanze auf 72.000 € für 4 Versuchsblöcke bzw. insgesamt 288.000 €.

Tab. 17.
Abschätzung der Holzerntemengen und -erlöse für 4 Versuchsblöcke

<table>
<thead>
<tr>
<th>Block</th>
<th>Gesamtfläche [ha]</th>
<th>Erntefläche [ha]</th>
<th>Erntemenge [Efm/ha]</th>
<th>[Efm]</th>
<th>Erntekostenfreier Erlös (DB I) [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Parz.</td>
<td>40,0</td>
<td>30,0</td>
<td>70–85</td>
<td>2.100–2.550</td>
<td>40 €</td>
</tr>
<tr>
<td>8 Parz.</td>
<td>40,0</td>
<td>30,0</td>
<td>70–85</td>
<td>2.100–2.550</td>
<td>40 €</td>
</tr>
<tr>
<td>16 Parz.</td>
<td>40,0</td>
<td>30,0</td>
<td>70–85</td>
<td>2.100–2.550</td>
<td>40 €</td>
</tr>
<tr>
<td>32 Parz.</td>
<td>40,0</td>
<td>30,0</td>
<td>70–85</td>
<td>2.100–2.550</td>
<td>40 €</td>
</tr>
</tbody>
</table>

SUMME: 120,0 SUMME: 8.400-10.200 SUMME: 336.000–408.000 €

Tab. 18.
Abschätzung der Kosten für Pflanzen und Pflanzung für 4 Versuchsblöcke

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Parz.</td>
<td>40,0</td>
<td>10,0</td>
<td>1.000</td>
<td>10.000</td>
<td>0,80 €</td>
<td>8.000 €</td>
</tr>
<tr>
<td>8 Parz.</td>
<td>40,0</td>
<td>10,0</td>
<td>1.000</td>
<td>10.000</td>
<td>0,80 €</td>
<td>8.000 €</td>
</tr>
<tr>
<td>16 Parz.</td>
<td>40,0</td>
<td>10,0</td>
<td>1.000</td>
<td>10.000</td>
<td>0,80 €</td>
<td>8.000 €</td>
</tr>
<tr>
<td>32 Parz.</td>
<td>40,0</td>
<td>10,0</td>
<td>1.000</td>
<td>10.000</td>
<td>0,80 €</td>
<td>8.000 €</td>
</tr>
</tbody>
</table>

SUMME: 40,0 SUMME: 40.000 SUMME: 32.000 € SUMME: 40.000 €

Gesamtkosten: 72.000 €
8.3.5 Sturmwurfsimulation

Das Sturmereignis wird durch die Schaffung stehender (Bruch) und liegender Stämme (Wurf) simuliert. Hochstubben (Sturmbruch) können bereits im Zuge der Holzernte (Entnahme von ca. 30% des stehenden Vorrates; s.o.) durch den Harvester durch Kappung in einer Höhe von ca. 5–6 m erzeugt werden. Umgeworfene Bäume werden durch das Umschieben von 30% des verbleibenden Holzvorrates mit einer Maschine nachgeahmt (Bruch der Wurzeln oder Hochklappen des Wurzeltellers, bei Bedarf zusätzliche Bodenverwundung). Hierfür sollte ein schwerer Kettenbagger (30 t-Klasse) mit einer vollgeschützten Kabine eingesetzt werden, wie er beispielsweise beim Abriss von Gebäuden verwendet wird. Die Kosten dafür belaufen sich bei einer geschätzten mittleren Leistung von 15 Wurbäumen je Stunde auf insgesamt rund 34.000 € für 4 Versuchsblöcke bzw. ca. 136.000 € (Tab. 19). Etwaige Mehrkosten können durch den An-/Abtransport der Maschine/n entstehen, die von der Art, Anzahl und Herkunft der eingesetzten Maschinen abhängen. In jedem Fall empfiehlt sich zur Minimierung der Maßnahmendauer der zeitgleiche Einsatz von mindestens 2 Maschinen.

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgangsbestand</td>
<td>Anzahl Bäume/ha</td>
<td>600</td>
</tr>
<tr>
<td>Entnahme durch Harvester (30% d. Ausgangsbestands)</td>
<td>Anzahl Bäume/ha</td>
<td>180</td>
</tr>
<tr>
<td>Wurf-Bäume je ha (30% d. Ausgangsbestands)</td>
<td>Anzahl Bäume/ha</td>
<td>180</td>
</tr>
<tr>
<td>Wurffläche je Lokalität</td>
<td>ha</td>
<td>40</td>
</tr>
<tr>
<td>Wurf-Bäume je Lokalität (4*10 ha)</td>
<td>Anzahl Bäume/LS</td>
<td>7200</td>
</tr>
<tr>
<td>Zeit je Baum (entspricht 4 min; d.h. 15 Bäume/h)</td>
<td>h</td>
<td>0,067</td>
</tr>
<tr>
<td>Zeit insgesamt (ohne Transport/Anfahrt der Maschine)</td>
<td>Wochen</td>
<td>ca. 10</td>
</tr>
<tr>
<td>Maschinenkosten inkl. Maschinist, Versicherung und Transport</td>
<td>€/MAS</td>
<td>70 €</td>
</tr>
</tbody>
</table>

Gesamtkosten/Lokalität
33.768 €

8.3.6 Zaunbau

Zur Quantifizierung des Einflusses verbeißenden Schalenwilds (vgl. Abschnitt 3.3.5) wird ein Teil der Versuchsflächen aller Behandlungsvarianten eingezäunt. Bei einer repräsentativen Gleichverteilung der Stickprobenpunkte im Zaun bei den Varianten und deren Nachbarschaften variiert die Gesamt-Zaunlänge je Block zwischen 2880-3390 m. Die Gesamtänge je Lokalität (d.h. 4 Versuchsblöcke) beträgt bei einer maximalen Einzelzaunfläche von 2,5 ha somit ca. 12.060 m, was bei veranschlagten Kosten von 6,50 €/m (hasen- und rotwilsicherer Zaun, Bau durch Dienstleister) Gesamtkosten von ca. 79.000 € je Lokalität bzw. insgesamt 316.000 € ergibt.
8.3.7 Weitere Sachkosten

Darüber hinaus sollten vom Kern-Forscherteam nach Möglichkeit Inventuren von Bodenzustand (innerhalb der 5 Jahre nur 1 Vorinventur), Bodenvegetation und Insekten (Vor-, Initial- und jährliche Folgeinventuren für ca. 5 Jahre nach Implementierung der Renaturierungsmaßnahmen) durchgeführt werden. Die Kosten für diese Inventuren sind durch die Projektpartner zu kalkulieren, durchzuführen und müssen durch entsprechende zusätzliche finanzielle Mittel abgesichert werden.

Tab. 20. Überblick über die Zaunkosten je Lokalität

<table>
<thead>
<tr>
<th>Block</th>
<th>Zaunfläche [ha]</th>
<th>Zaunlänge [m]</th>
<th>Zaunkosten [€/lfm]</th>
<th>Zaunkosten [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Parz.</td>
<td>9,84</td>
<td>2880</td>
<td>6,50 €</td>
<td>18.720,00 €</td>
</tr>
<tr>
<td>8 Parz.</td>
<td>9,84</td>
<td>2880</td>
<td>6,50 €</td>
<td>18.720,00 €</td>
</tr>
<tr>
<td>16 Parz.</td>
<td>9,8</td>
<td>2910</td>
<td>6,50 €</td>
<td>18.915,00 €</td>
</tr>
<tr>
<td>32 Parz.</td>
<td>11,5</td>
<td>3390</td>
<td>6,50 €</td>
<td>22.035,00 €</td>
</tr>
</tbody>
</table>

GESAMTLÄNGE 12060 SUMME 78.390,00 €
9 Referenzen

Bütler Sauvain, R. 2003. Dead wood in Managed forests: how much and how much is enough? Development of an snag quantification method by remote sensing & GIS and snag targets based on Three-toed woodpeckers’ habitat requirements. Diss. Lausanne, 184 S.

Frischbier N. 2012. Untersuchungen zur einzelbaumverursachten kleinräumigen Variabilität und regenhöhenbasierten Dynamik des Bestandesniederschlags am Beispiel zweier Buchen-Fichten-

Fritz P. 2006. Ökologischer Waldbumbau in Deutschland: Fragen, Antworten, Perspektiven. Ökom-Verlag, 351 S.

Kamimura K., Saito S., Kitagawa K., Mizunaga H. 2009. Tree pulling experiments. Forestry and Forest Product Research Institute (FFPRI); Shizuoka University, 17 p.

Little S., and E. B. Moore. 1953. Severe burning treatment tested on lowland pine sites. USDA Forest Service, Station Paper 64. Northeastern Forest Experiment Station, Broomall, PA.

Mucina L. 2009. Vegetation Condition & Vegetation Mapping I. Critical Global Review of Approaches to Assessment of Vegetation Condition. Department of Environmental & Aquatic Sciences, Curtin University of Technology, School of Science, GPO Box U1987, Perth, WA 6845, Australia, Report to: Science Division of the Department of Environment & Conservation, Government of Western Australia, 58 S.

Pouska V. 2011. The role of wood decay fungi in the dynamics of a mountain spruce forest. Ph.D. Thesis Series, No.4. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 123 S.

Prach K. 1989. Primary forest succession in sand dune areas. Research Institute for Forestry and Landscape Planning De Dorschkamp, Wageningen, NL.

Pretzsch H. 2002. Grundlagen der Waldwachstumsforschung, Blackwell Verlag, 414 S.

Suck R., Bushart M. 1995. Gesamtlegende der Übersichtskarte der potentiellen natürlichen Vegetation der Bundesrepublik Deutschland im Maßstab 1:500000 – Stand Dezember 1994. – MsKr. IVL (i.A. BfN), Hemhofen.

TEEB 2010. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB.

von Carlowitz H.C. 1713. Sylvicultura oeconomica. Leipzig, 414 S.

Yu X. 2012. Biodiversity Monitoring and Research in Chinese Ecosystem Research Network (CERN). CERN Secretary General, Professor Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; The Fifth GEOSS Asia-Pacific Symposium 2-4 April 2012, Tokyo, Japan.

10 Glossar

Das nachfolgende Glossar enthält relevante Begriffe, Definitionen und Anmerkungen, die für die Konzeption großflächiger Dauerversuchsanlagen in Waldökossystemen relevant sind.

A

Abschirmender Naturschutzansatz

Schutzobjekte werden dem Regime direkter menschlicher Eingriffe (nach Möglichkeit) entzogen. [SCHERZINGER 1990, IBISCH & KREFT 2008]

Adaptiver Naturschutzansatz [engl. adaptive approach of nature conservation]

Adaptation [engl. adaptation]

Adjustment in natural or human systems to a new or changing environment. Various types of adaptation can be distinguished, including anticipatory and reactive adaptation, private and public adaptation, and autonomous and planned adaptation. [MEA 2005]

Adaptive capacity

The general ability of institutions, systems, and individuals to adjust to potential damage, to take advantage of opportunities, or to cope with the consequences. [MEA 2005]

Adaptives Management [engl. adaptive management]

A systematic process for continually improving management policies and practices by learning from the outcomes of previously employed policies and practices. In active adaptive management, management is treated as a deliberate experiment for purposes of learning. [MEA 2005]

Arealverschiebung [engl. biome shift]

Tatsächliche oder angenommene Veränderung des Verbreitungsgebietes einer Baumart ausgelöst durch den erwarteten Klimawandel und die damit verbundene Veränderung der für das Vorkommen von Baumarten wesentlichen Klimaparameter wie Temperatur und Niederschlag. [LFE 2009]

Aufnahmeeinheit [Behandlungseinheit; engl. sample unit; unit of measurement; treatment unit]

Since the variation associated with treatment effects changes as the sizes of the observational units change (Mercer and Hall, 1911; Home and Schnieder, 1995), the design process should include an evaluation of the minimum spatial area over which the treatment
effect will be measured. At least for primary objectives, the response of the entire large-scale treatment unit is of interest. [GANIO & PUETTMANN 2008]

Ausbreitung [engl. dispersal]; siehe auch Samenausbreitung

Dispersal is the “movement of individuals from a site (emigration) to another (immigration)”. [LEIBOLD et al. 2004]

B

Beprobungseffekt [engl. sampling effect]

The hypothesis that diversity might influence an ecosystem process because of the greater chance that a given species trait would be present at higher diversity, and the effect of its presence on ecosystem functioning. [TILMAN 2001]

Biodiversität [engl. biodiversity]

The diversity of life at all levels of organization (genetic, individual, population and community) and all taxonomic ranks (e.g. species, genus and family) at a specified location or in general, in the biosphere. [VAN ANDEL & ARONSON]

C

Cross-scale feedback

A process in which effects of some action are transmitted from a smaller spatial extent to a larger one, or vice versa. For example, a global policy may constrain the flexibility of a local region to use certain response options to environmental change, or a local agricultural pest outbreak may affect regional food supply.

E

Etablierung [engl. establishment]

Establishment is the process during which a germinating seed takes root, uses up parental provisioning, and assumes independent growth as a seedling. [HOWE & SMALL 1982]

Extensivierung [engl. de-intensification = intensiv genutztes Grünland; extensification]

F

Fernausbreitung [engl. long distance dispersal]

For the purposes of this paper, we consider a seed dispersal event to be of “long distance” if it is over 100 m. This simple operational definition suits our needs, but what constitutes long-distance dispersal may depend on the context at hand. Thus, it can also be useful to define
long-distance seed dispersal in a relative fashion, as when a long-distance seed dispersal event is one that occurs in the upper 1% of seed dispersal distances calculated from an empirically estimated dispersal density function or kernel [...]. [Cain et al. 2000]

Fluktuation [engl. fluctuation]

Innerhalb verschiedener Waldentwicklungsphasen gibt es aber auch ständige kleinere Wechsel, die eine bestimmte Entwicklungsrichtung nicht erkennen lassen, sondern vor allem in sog. „reifen Waldphasen“ um mittlere Gleichgewichtszustände pendeln. Ungerichtete Entwicklungen in walldynamischen Prozessen bezeichnet man als Fluktuation. Sie können in schwer bestimmmbarem Maße Einfluß auf Sukzessionen haben, so daß bei bestimmten Beobachtungen beide Begriffe nicht immer zweifelsfrei Anwendung finden können [...]. [OTTO 1994]

Fragmentierung [engl. fragmentation]

Many long-standing theories concerning the ecological effects of forest fragmentation stem from conceptualizations of landscapes in which forested ecosystems are viewed as islands of habitat embedded in an uninhabitable matrix of non-forested uses (Haila, 2002). [...] The process of forest fragmentation results in three distinct changes in forest ecosystem pattern: reduced forest area, increased isolation of resulting remnants, and the creation of edges where remnant forest abuts modified ecosystems. [KUPFER et al. 2006]

The separation of a formerly continuous natural area into smaller natural units that are isolated from each other by lands or wetland that were converted for economic production or the development of infrastructure such as road building. [VAN ANDEL & ARONSON 2012]

The process through which formerly continuous forest expanses turn into forest patches of varying size, isolated from each other by tracts of non-forested land, is called fragmentation. [Hunter 1999]

Funktionelle Diversität [engl. functional diversity]

The range and value of those species and organismal traits that influence ecosystem functioning. [TILMAN 2001]

Funktionelle Gruppen [engl. functional groups]

A set of species that have similar traits and that thus are likely to be similar in their effects on ecosystem functioning. [TILMAN 2001]

Groups of organisms that respond to the environment or affect ecosystem processes in a similar way. Examples of plant functional types include nitrogen-fixer versus non-fixer, stress-tolerant versus ruderal versus competitor, resprouter versus seeder, deciduous versus evergreen. Examples of animal functional types include granivorous versus fleshy-fruit eater, nocturnal versus diurnal predator, browser versus grazer. [MEA 2005]
Großflächige Management Experimente [engl. Large-Scale Management Experiments]

Large-scale silviculture experiments are silviculture experiments conducted at operational scales. As true manipulative experiments (sensu Hurlbert 1984), LSSEs are characterized by such fundamental elements of experimental design as randomization, replication, and unmanipulated, “control” treatments (Monserud 2002). [POAGE & ANDERSON 2007]

Habitat Fragmentierung [engl. habitat fragmentation]

The task of reviewing this literature is daunting not only because of its size but also because different authors use different definitions of habitat fragmentation, and they measure fragmentation in different ways and at different spatial scales. [...] Habitat fragmentation is often defined as a process during which “a large expanse of habitat is transformed into a number of smaller patches of smaller total area, isolated from each other by a matrix of habitats unlike the original. [WILCOVE et al. 1986 zit. In: FAHRIG 2003]

Habitat fragmentation is among the most important of all threats to global biodiversity [...], and edge effects—diverse physical and biotic alterations associated with the artificial boundaries of fragments—are dominant drivers of change in many fragmented landscapes [...]. Edge effects can have serious impacts on species diversity and composition, community dynamics, and ecosystem functioning [...]. Many edge effects are variable in space and time [...]. [LAURANCE et al. 2007]

Hemerobie [engl. hemeroby]

The terms such as hemeroby, synthropization (also called anthropization or anthropogenization) were born in Europe—in landscapes heavily impacted (over millennia and over large scales) by human civilization. Some say that every stone in Europe has been either turned over by plough or bloodied by wars uncountable many times. Much of the vegetation cover in southern, central and western Europe is either man-made or man-impacted. [...] Much of the rest of European (non-synanthropic) vegetation in densely populated parts of Europe has been seriously impacted by man. The degree of this impact has been addressed by several formal concepts of which hemeroby [...] became well established and is found still in use in many European countries. [...] The term hemeroby (from Greek hemeros = cultivated) was coined by Finnish botanist Jalas (1953, 1955) and was used to assess level of “naturalness” (native versus alien status) of species [MUCINA 2009]

The term “hemeroby” is often used for the purpose of defining the degree of human influence on forests. Hemeroby includes all anthropogenic influences such as the effects of management, the impact of cattle grazing, game browsing, tourism and other kinds of human impact. The degree of naturalness can vary from “virgin forest” (extremely high degree of naturalness) to man-made plantations of exotic tree species (very low degree of naturalness). [PARVIAINEN 2005]
Historisch alte Wälder [engl. ancient forests]

“Ancient forest” and “semi-natural forests” are the terms most commonly used in Great Britain, and are sometimes found in the scientific literature in other European countries. “Ancient forest” refers to sites which have been continuously covered by forests for several hundred years or at least since the time when reliable maps were first made. Some may be remnants of prehistorical woodlands whilst others arise as secondary woodland on ground cleared at some time in the past (PETERKEN 1993; Forestry Commission 1994). [PARVIJÄRVI 2005]

I

Indikatoren [engl. (ecological) indicators]

Variables that can be readily identified, and are relatively easy to measure or monitor and that serve as synthetic representatives or signals of changes in ecological or environmental conditions. [DALE & BEYELER 2001]

K

Klimawandel [engl. Climate Change]

Klimawandel kann durch natürliche interne Prozesse oder äußere Klimafaktoren bedingt sein, oder durch langanhaltende anthropogene Änderungen in der Zusammensetzung der Atmosphäre oder in der Landnutzung.

Klimax [engl. climax stage]

Angenommener Endzustand einer Sukzession; eine Lebensgemeinschaft, die einen stabilen Zustand erreicht hat. [BEGON et al. 1996]

Der unterschiedliche Gebrauch des Begriffs „Klimax“, seine Begriffsveränderungen und Begriffsveränderungen zwingen dazu, die Ursachen der Entfesselung dynamischer Prozesse im Wald genauer ins Auge zu fassen. Die Prozesse, die in jedem Wald – Naturwald wie Wirtschaftswald – vor sich gehen, vollziehen sich im Rahmen der Umwelteinflüsse, in welchem die Entwicklung abläuft und im Rahmen ökosysteminterner Konditionen und Einflüsse. […]

von Voraussetzungen hervor, die zum Erreichen der Klimax verwirklicht sein müssen. Da diese Autoren sich vor allem mit Waldgesellschaften befassen, unterstreichen sie nachdrücklich die Normalität externer Ereignisse wie Wind, Feuer u. a. Sie betonen, daß Wald in sich nie stabil ist. Je mehr man aber die Beobachtung permanenten Wandels auch in reifen Wäldern akzeptiert, um so mehr verliert das Klimaxkonzept seine Gültigkeit. SPURR und BARNES (a. a. O., zitiert in OTTO 1994) wollen den Ausdruck „Klimax“ folglich nicht mehr verstanden wissen als stabile, dauerhafte, sich selbst regenerierende und erhaltende Schlüßgesellschaft mit allenfalls geringfügigen Fluktuationen um einen ausgewogenen mittleren Zustand, sondern akzeptieren ihn nur noch als mehr oder weniger vagen Begriff, der sich lose mit der Vorstellung später Sukzessionsphasen, die relativ stabil sind, verbindet. [OTTO 1994]

Konkurrenz [engl. competition]

Wechselbeziehungen zwischen zwei (oder mehreren) Organismen (oder Arten), bei der gegenseitig die Geburts- und/oder Wachstumsrate verringert und/oder die Sterberate erhöht werden. [BEGON et al. 1996]

The competition of mixtures is dynamic because populations are dynamic. Competition changes the composition of mixtures, or sometimes stabilized it. [SILVERTOWN & CHARLESWORTH 2007]

K-Strategie [engl. k-strategy]

Pflanzen oder Tiere, die später als r-Strategen geschlechtsreif werden und eine geringere Nachkommenzahl als diese haben. Sie sind darum nicht in der Lage, kurzfristig auftretende Optimalbedingungen für Massenvermehrungen zu nutzen. [THOMASIUS & SCHMIDT 1996]

L

Landschaft [engl. landscape]

In ecology, landscape is defined as a heterogenous area composed of a cluster of interacting ecosystems that are repeated in a similar manner throughout [FORMAN & GODRON 1986; In ODUM & BARRETT 2004].

Langzeitexperimente/-studien [long-term experiments/ studies]

The complexity of ecological systems and the various temporal and spatial dimensions have led to the recognition that ecological research must be conducted on long time scales (here long-term ecological research is defined as decades to longer). The argument is that long-term study is required not only to understand ecological complexity, but also to ask important or meaningful questions [LIKENS 1989].
Direct, repeated observations (e.g. through historical photography or long-term plot studies; del Moral 2007) began formally with studies of dunes in Denmark (Warming 1895) and Michigan (USA; Cowles 1899), and such observations provide the best source of evidence about temporal changes in plant and soil biological communities over years to decades. However, few studies extend beyond several decades in duration [...]. [WALKER et al. 2010]

Lücken [engl. gaps]

Two main definitions of treefall gaps exist: canopy gap: a ‘hole’ in the forest through all levels down to an average height of 2m above ground and extended gap: canopy gap plus the area that extends to the bases of surrounding canopy trees. [SCHLIEMANN & BOCKHEIM 2011]

LTER Netzwerk

The Long Term Ecological Research (LTER) Network was created by the National Science Foundation (NSF) in 1980 to conduct research on ecological issues that can last decades and span huge geographical areas. [LTER Report 2012]

M

Management Experiment [engl. management experiment]

In contrast, MEs are well-designed, agency-led administrative studies undertaken as an integral part of management itself and not solely as research projects, as part of an active adaptive management process [...]. [POAGE & ANDERSON 2007]

Messwiederholungen [engl. repeated measures]

Repeated-measures analyses require that all experimental units for all treatments are assessed at the same point in time and that sufficient numbers of experimental units relative to the number of time points when measurements are made. This is necessary to estimate correlations among repeated measurements on the same experimental units. A minimal requirement is to install more replications than the number of time periods of interest. [GANIO & PUETTMANN 2008]

Migration [engl. migration]

Die Wanderung von Individuen und häufig ganze Populationen von einem Gebiet in ein anderes. [BEGON et al. 1996]

Mikrostandort [engl. micro-site]

A site that is capable of holding a single individual. Microsites are nested within localities. [LEIBOLD et al. 2004]
N

Nachhaltigkeit [engl. sustainability]

A characteristic or state whereby the needs of the present and local population can be met without compromising the ability of future generations or populations in other locations to meet their needs. [MEA 2005]

Nahausbreitung [engl. short distance dispersal]

Natürlichkeit [engl. naturalness]

“Naturalness” has been one of the core (non-concepts) of nature conservation and management research (and application). Protecting natural environment, natural ecosystem sounds very logical especially in days when nature (wilderness, natural ecosystems) give way to expanding “noosphere” (Michalko 1974), anthropogenic biomes (Alessa & Chapin 2008). [MUCINA 2009]

The concept of “naturalness” refers to how natural a forest is. The naturalness of a forest ecosystem or of the vegetation can be defined as the extent to which the species composition of the existing vegetation corresponds to that of the potential natural vegetation on the same site (Naturnähe Österreichischer Wälder 1997). [PARVIAINEN 2005]

Naturwälder [engl. natural forests]

“Natural forests” develop and regenerate with natural succession, but can show anthropogenic influences from the past (see SCHUCK et al. 1994). Natural forests always originate from the original forest cover, e.g. the forests are reproduced naturally or regenerate naturally (they are not modified by sowing or planting). The difference between “virgin” and “natural” forests has to do with past human influence. The term natural forest is more relevant in practice, as some kinds of human influence can nearly always be found in European forests. [PARVIAINEN 2005]

Nutzung

Ökologie

Ökologie ist die Wissenschaft von den Beziehungen des Organismus zur umgebenden Außenwelt. [HÄCKEL 1866]

Ökologie ist die Wissenschaft vom Stoff- und Energiehaushalt der Biosphäre und ihrer Untereinheiten (z.B. Ökosysteme) sowie von den Wechselbeziehungen zwischen den verschiedenen Organismen, zwischen Organismen und den auf sie wirkenden Umweltfaktoren sowie zwischen den einzelnen unbelebten Umweltfaktoren. [BICK 1998]

Ökosystemrenaturierung

Ökosystem(dienst)leistungen [engl. ecosystem services]

The benefits people obtain from ecosystems. These include provisioning services such as food and water; regulating services such as flood and disease control; cultural services such as spiritual, recreational, and cultural benefits; and supporting services such as nutrient cycling that maintain the conditions for life on Earth. The concept “ecosystem goods and services” is synonymous with ecosystem services. [MEA 2005]

Ökosystem-Management [engl. ecosystem management]

Ecosystem management integrates scientific knowledge of ecological relationships within a complex sociopolitical and values framework toward the general goal of protecting native ecosystem integrity over the long term. [GRUMBINE 1994]

An approach to maintaining or restoring the composition, structure, function, and delivery of services of natural and modified ecosystems for the goal of achieving sustainability. It is based on an adaptive, collaboratively developed vision of desired future conditions that integrates ecological, socioeconomic, and institutional perspectives, applied within a geographic framework, and defined primarily by natural ecological boundaries. [MEA 2005]

Ökologische Nische [engl. ecological niche]

Ecological niches are defined by the relationships between organisms and the physical and biological environment, taking into account both time and space. A particular combination of physical factors (e.g. temperature and moisture) and biological factors (e.g. food resources and natural enemies) at a particular point in time and space defines a point in niche space. A modern definition of a species' ecological niche is the response that the species has to each point in niche space and the effect that the species has at each point [a]. Responses are defined in terms of demographic variables, such as survival and individual growth; but of
most importance is the overall outcome of these responses, the per-capita rate of increase. Effects include consumption of resources, interference with access to resources by other organisms, support of natural enemies and occupancy of space. [TILMAN 1982, SHEA & CHESSON 2002, S. 171]

Fundamentale Nische

Eine fundamentale Nische ist die maximale Nische, welche eine Art bei Nichtvorhandensein der Konkurrenz anderer Arten einnehmen könnte, also die aufgrund der Artpotenz überhaupt mögliche. [OTTO 1994]

Realisierte Nische

Eine realisierte Nische ist jener Anteil der maximalen Nische, der von einer Art bei Anwesenheit von Mitkonkurrenten in einem Ökosystem noch eingenommen wird (das Puzzlespiel zerlegt sich in Puzzle-Teilchen, und jedes Teilchen bekommt spezifische Formen, Rundungen und Buchten, so daß es „hineinpaßt“. [OTTO 1994]

Passive Renaturierung [engl. passive restoration]

A term used by many authors to indicate the autonomous or autogenic recovery of a degraded ecosystem by means of the unassisted processes of resilience, succession or natural regeneration. A more precise and evocative term is assisted natural regeneration (cf. CLEWELL & MCDONALD 2009, zitiert aus VAN ANDEL & ARONSON 2012). [van Andel & Aronson 2012]

Patch

Patch a discrete area of habitat. Patches have variously been defined as microsites or localities [LEVINS 1969, TILMAN 1994, AMARASEKARE & NISBET 2001, MOUQUET & LOREAU 2002].

Pionierwaldstadium [engl. pioneer stage]

Die Sukzession beginnt mit einem gut ausgebildeten Kräuterstadium, von dem sie direkt zum Pionier- oder Anfangswaldstadium führt. Das trifft dort zu, wo bei einem gut geschlossenen Vorbestand nach plötzlicher Freilag (Sturmschaden, Waldbrand, Kahlenschlag) genügend Freiraum für die Ansiedlung von Annuellen, Bienen oder ausdauernden Kräutern vorhanden ist. Gleichzeitig stellen sich meist auch Keimlinge von Pionierbaumarten ein, [...]. [THOMASIUS & SCHMIDT 1996]

Potenzielle Natürliche Vegetation (PNV) [engl. potential natural vegetation]

Dieser hypothetische, natürliche Zustand der Vegetation im betrachteten Areal beschreibt jene Situation, die sich unter den heutigen Umweltbedingungen und ohne menschliche Eingriffe „schlagartig“ einstellen würde. [HUTH et al. 2012, nach TÜXEN 1956]
An image or notion of the vegetation type that would theoretically arise in an area if all direct human influences were removed. This is not necessarily the ‘original’ or ‘pre-disturbance’ vegetation, since the biophysical environment and climate may have been altered. PNV is useful as an expression of the environmental site conditions per se at a certain point in time [cf. TÜXEN 1956, zitiert aus VAN ANDEL & ARONSON 2012].

Primärsukzession [engl. primary succession]

Primary succession is species change on substrates where the disturbance has left a scant biological legacy (Clements 1916). [WALKER & DEL MORAL 2008]

Prognose [engl. forecast]

“The best projection or prediction about the future given by one particular model or one particular expert (e.g. weather forecast).” [aus: COREAU et al. 2009, mit Verweis auf: MACCRACKEN 2001, RIBEIRO & MARTIN 2009]

Projektion [engl. projection]

A statement about what would happen, based on the extrapolation of past and current trends (e.g. population projections). [aus: COREAU et al. 2009; mit Verweis auf: MACCRACKEN 2001; RIBEIRO & MARTIN 2009]

Pseudoreplikation [engl. pseudoreplication]

However, and the point is the central one of this essay, if a significant difference is detected, this constitutes evidence only for a difference between two (point) locations one “happens to be” a spot on the 1-m isobath, and the second “happens to be” a spot on the 10-m isobath. Such a significant difference cannot legitimately be interpreted as demonstrating a difference between the two isobaths, i.e., as evidence of a “treatment effect.” For all we know, such an observed significant difference is no greater than we would have found if the two sets of eight bags had been placed at two locations on the same isobath. If we insist on interpreting a significant difference in Example 3 as a “treatment effect” or real difference between isobaths, then we are committing what I term pseudoreplication. Pseudoreplication may be defined, in analysis of variance terminology, as the testing for treatment effects with an error term inappropriate to the hypothesis being considered. In Example 3 an error term based on eight bags at one location was inappropriate. In mensurative experiments generally, pseudoreplication is often a consequence of the actual physical space over which samples are taken or measurements made being smaller or more restricted than the inference space implicit in the hypothesis being tested. In manipulative experiments, pseudoreplication most commonly results from use of inferential statistics to test for treatment effects with data from experiments where either treatments are not replicated (though samples may be) or replicates are not statistically independent. Pseudoreplication thus refers not to a problem in experimental design (or sampling) per se but rather to a particular combination of experimental design (or sampling) and statistical analysis which is inappropriate for testing the hypothesis of interest. [HURLBERT 1984]
Randeffekte [engl. edge effects]

We define a forest edge as an abrupt transition between two relatively homogeneous ecosystems, at least one of which is a forest. Natural forests often include recognizable edges, usually corresponding to physical gradients in topography, hydrology, or substrates (Whittaker 1956, Roman et al. 1985) or marking the borders of large disturbances such as fires or hurricanes (Bormann & Likens 1979). [HUNTER 1999]

Die konzentration von Requisiten im Bereich von Übergangszonen zwischen verschiedenen Biotopen = Ökotonen erhöht also die Diversität und den Individuenreichtum pro Flächeneinheit. Dieses Phänomen nennt man Randlinieneffekt (edge effect). Je mehr verschiedenartige Biotope in einer Landschaft vorkommen, je starker sie in kleinere Flächen zerlegt sind und je starker ihr Nachbarschaftsgrad ansteigt, um so mehr erhöht sich auch der Randlinieneffekt; [...] [OTTO 1994, S. 246]

Räumliche Ebene [engl. spatial scale]

[...] there is no single “correct” scale on which to describe populations or ecosystems. [LEVIN 1992]

Die Wahl der räumlichen Betrachtungseinheit kann das Ergebnis der Untersuchung nachhaltig beeinflussen. [...] Das grundlegende Dilemma bei der Auswahl geeigneter räumlicher Betrachtungseinheiten: (1) übergeordnete räumliche Einheiten lassen sich schwer auf einzelne Waldbestände übertragen (Verlust relevanter Detailinformationen), während sich (2) Untersuchungen auf kleinster räumlicher Ebene nicht verallgemeinern lassen. [WIENS 1989]

Regeneration [engl. regeneration]

Rehabilitation [engl. ursprünglich = river rehabilitation; später verallgemeinert]

Regionalisierte IPCC-Klimaszenarien

[...] liefern die Grundlage zur Abschätzung möglicher climatic Änderungen/Einschnitte in der Natur der jeweiligen Region [LFE 2009]

Rekonstruktion [engl. reconstruction]

Rekultivierung [engl. reclamation, remediation, i. w. auch re-vegetation, creation und fabrication]

Renaturierung (i.e. Sinne) [engl. restoration, rehabilitation]

Renaturierungsökologie

Stellt die wissenschaftlichen Grundlagen für die Umsetzung der Ökosystemrenaturierung zur Verfügung. [modif. ZERBE & WIEGLEB 2009, S. 5]

The study of ecological restoration, for which practice it attempts to provide concepts, theories, models, methodologies and technical, biological and ecological information for use by practitioners. Concurrently, the science that advances the frontiers of theoretical ecology through studies of restored ecosystems and those that are undergoing restoration. [VAN ANDEL & ARONSON 2012]

Resistenz [engl. resistance]

Measurement of the consequences on other variables of permanently changing a given variable; if the consequent changes are small, the system is relatively resistant [PIMM 1984, 1991; In: Noss 2001]

System undergoes less change in a state of flux variable as a result of disturbance [DEANGELIS et al. 1989, GRIMM et al. 1992, HERBERT et al. 1999; In: Noss 2001]

System stays essentially unchanged (constancy) [GRIMM & WISSEL 1997; In: Noss 2001]

Ability of a community to maintain its composition and biomass in response to environmental stress [GRIME et al. 2000; In: Noss 2001]

Resilienz [engl. resilience]

[...] magnitude of disturbance that can be absorbed or accommodated by an ecosystem before its structure is fundamentally changed to a different state [HOLLING 1973, 1986; In: Noss 2001]

[...] variable that has been displaced from equilibrium returns quickly to it [PIMM 1984, 1991; In: Noss 2001]
[...] rate of return to the reference state following disturbance [DEANGELIS et al. 1989, GRIMM et al. 1992, HERBERT et al. 1999; In: NOSS 2001]

[...] capacity to recover from a distance in species composition [WALKER 1995; In: NOSS 2001]

[...] system returns to the reference state (or dynamic) after a temporary disturbance [GRIMM & WISSEL 1997; In: NOSS 2001]

Restauration, Restaurierung

Restitution [engl. restoration]

Aktive Wiederherstellung eines ursprünglichen Zustandes, in jedem Fall mit technischen Mitteln bzw. Maßnahmen. [ZERBE & WIEGLEB 2009, S. 4]

R-Strategie [engl. r-strategy]

Species with small-seeds, high rates of juvenile mortality, short life spans, and small adult size are clearly r-selected [...]. [LECK et al. 2008]

Revitalisierung [engl. rehabilitation, revitalization]

S

Samenausbreitung [engl. seed dispersal]

Dispersal is the departure of a diaspore (e.g. seed or fruit) from the parent plant. [SMALL & HOWE 1982, S. 202]

Anemochorie [engl. anemochorie]

Anemochorie ist die Ausbreitung von Diasporen über Wind oder Luftströmungen. [BONN & POSCHLOD 1998]

Barochorie [engl. barochory]

Bei der barochorie fallen die vergleichsweise schweren Ausbreitungseinheiten unmittelbar nach der Reife ohne Einwirkung äußerer Kräfte zu Boden (schwerkraftbedingter Fall der Diasporen). [BONN & POSCHLOD 1998]

Zoochorie [engl. zoochory]

Zoochorie beschreibt die Ausbreitung von Diasporen durch Tiere. [BONN & POSCHLOD 1989]
Sanierung [engl. remediation]

Aktive Wiederherstellung eines erwünschten Zustandes unter gezieltem Einsatz von Maßnahmen (Seesanierung mit „Therapiemaßnahmen“ im Einzugsgebiet; [...]). [ZERBE & WIEGEB 2009, S. 4]

Schirmarten [engl. umbrella species]

Species that have either large habitat needs or other requirements whose conservation results in many other species being conserved at the ecosystem or landscape level. [MEA 2005]

Schlüsselarten [engl. keystone species]

A species whose impact on the community is disproportionately large relative to its abundance. Effects can be produced by consumption (trophic interactions), competition, mutualism, dispersal, pollination, disease, or habitat modification (nontrophic interactions). [MEA 2005]

Seneszenz [engl. senescence]

Stadium des Alterns im Entwicklungszyklus von Organismen [THOMASIU SCHMIDT 1996, S. 389]

Shifting mosaic steady state

Störung [engl. disturbance]

A significant and often irreversible change in environmental conditions, population size, community composition and/or the magnitude and direction of some ecosystem-level process – typically by reducing numbers of individuals, species or habitat. Can be caused by natural or human-induced disturbance factors. [VAN ANDEL & ARONSON 2012]

Sukzession [engl. succession]

Succession, the study of species change over time, is a fundamental concept of ecology (McIntosh 1999). It addresses ecosystem dynamics both during and beyond the life span of organisms. Formal studies of plant successional have been conducted since 1895 (Warming 1895) and much has been learned about how ecosystems respond to a dynamic physical environment (Pickett & White 1985), how species colonize and interact (Glenn-Lewin et al. 1992), and how communities assemble and change (Temperton et al. 2004). [WALKER & DEL MORAL 2008]
Storyline

Szenario [engl. scenario]

A plausible description about alternative futures, based on a coherent and internally consistent set of assumptions about key relationships and driving forces. Scenarios include one or several storylines, and may also include modeling results (e.g. climate scenarios). [aus: COREAU et al. 2009, mit Verweis auf: MACCRACKEN 2001, RIBEIRO & MARTIN 2009]

Entwurf der Abfolge von möglichen Ereignissen in der Zukunft (mögliche Zukünfte oder Zukunftspfade). Die Entwicklung alternativer Szenarien, u. a. der Worst case- und Best case- Szenarien, ist ein fundamentales Hilfsmittel, um die Spannbreite denkbarer Risiken zu erfassen. [LFE 2009]

A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about key driving forces (e.g., rate of technology change, prices) and relationships. Scenarios are neither predictions nor projections and sometimes may be based on a “narrative storyline.” Scenarios may include projections but are often based on additional information from other sources. [MEA 2005]

T

Totholz [engl. dead wood]

U

Urwald [engl. virgin forests]

“Virgin forest” can be defined as follows: it is original in its structure and has developed untouched by humans under natural conditions. Virgin forest is not limited only to the climax stage, although the majority of virgin forests are old-growth forests. The terms “primeval forest”, “primary forest” or “pristine forest” are often used interchangeably with the term “virgin forest” [SCHUCK et al. 1994, PARVIANEN 2005].
V

Vorausschau [engl. foresight]

A construction about the future, with the aim to prepare for it. There is a strong link with management and decision making (e.g. technology foresight). [aus: COREAU et al. 2009; mit Verweis auf: MACCRACKEN 2001; RIBEIRO & MARTIN 2009]

Vorhersage [engl. prediction]

A statement about what is thought will happen in the future, often associated with probability distributions. The main characteristics of future predictions are their degree of certainty, which lead to only one prediction (compared to the multiplicity of scenarios). Many authors use this term to describe the result of a modelling exercise based on a set of assumptions (e.g. predictions of potential distribution areas). [aus: COREAU et al. 2009, mit Verweis auf: MACCRACKEN 2001, RIBEIRO & MARTIN 2009]

W

Wald-Matrix [engl. forest matrix]

Although this usage of matrix does not necessarily agree with other formal definitions of this term (e.g. the matrix defined as the most extensive or dominant area; Forman, 1995), it is intuitive and matches the usage of Lindenmayer & Franklin (2002), who have theorized it most effectively. This definition also recognizes that the matrix can take on a variety of forms in a given landscape and can contain a range of varying habitat quality. [KUPFER et al. 2006, p.8]

Wiederherstellung der ökologischen Integrität [recovery of ecosystem integrity; vgl. SER 2004]

Wiederherstellung der charakteristischen Artenzusammensetzung und Ökosystemstruktur (einschließlich z.B. der Wiedereinbürgerung von Großsäugern) als Voraussetzung für die Funktionstüchtigkeit eines Ökosystems (die aber nicht zwangsläufig durch die Ökosystemrenaturierung gegeben sein muss). [ZERBE & WIEGLEB 2009, S. 4f.]

Wiederherstellung der „Ökosystemgesundheit“ [recovery of ecosystem health; vgl. SER 2004]

Wiederherstellung der Funktionstüchtigkeit eines Ökosystems. [ZERBE & WIEGLEB 2009, S. 5.]

Wildnis [engl. Wilderness]

A wilderness is an area governed by natural processes. It is composed of native habitats and species, and large enough for the effective ecological functioning of natural processes. It is unmodified or only slightly modified and without intrusive or extractive human activity, settlements, infrastructure or visual disturbance. [WILD EUROPE INITIATIVE 2012]

A large area of unmodified or slightly modified land, and/or sea, retaining its natural character and influence, without permanent or significant habitation, which is protected and managed so as to preserve its natural conditions. [IUCN 2008]
Wild Areas

Wild areas have a high level of predominance of natural process and natural habitat. They tend to be individually smaller and more fragmented than wilderness areas, although they often cover extensive tracts. The condition of their natural habitat, processes and relevant species is however often partially or substantially modified by human activities such as livestock herding, hunting, fishing, forestry, sport activities or general imprint of human artifacts. [WILD EUROPE INITIATIVE 2012]

Zeitliche Trends [engl. temporal trends]

A common objective in LSMEs is to assess time trends and determine how these trends differ among treatments. Prioritizing the importance of this objective is crucial, as data analysis methods for detection and estimation of trends can easily be influenced by the study design. When measurements are made repeatedly on the same experimental unit and the measurements are used to estimate trends over time, the correlation among the measurements should be accounted for in the analysis, for example, a repeated-measure, analysis-of-variance-type analysis. [SCHABENBERGER & PIERCE 2002; In: GANIO & PUETTMANN 2008]
11 Anhang

11.1 Detailkarten
11.2 Indikatoren-Steckbrief Beispiel I: Totholz

Untersuchungsobjekt: Totholz

Arbeitshypothesen zur Ableitung konkreter Zielformulierungen:
Eine Erhöhung der Gesamt-Totholzmenge sowie die Diversifizierung der Totholzvorräte in Bezug auf Zerfallsklassen, Kategorien (stehend, liegend, Stubben), Größenklassen und Baumarten führt zu einer mittel- bis langfristigen Erhöhung der Arten- und Habitatvielfalt, insbesondere im Hinblick auf saproxylische Insekten, höhlenbewohnende Vogel- und Fledermausarten, Pilze sowie Moos- und Flechtenarten.

Zielformulierung:
- Erhöhung der Gesamt-Totholzmenge (m³/ha) zur Schaffung kleinaräumiger Strukturen,
- Erhöhung der Heterogenität des vorhandenen Totholzes hinsichtlich Zerfallsklassen, Kategorien (stehend, liegend, Stubben), Größenklassen und Baumarten,
- Erhöhung der Variabilität der räumlichen Verteilung des Totholzes

Messgrößen zur Charakterisierung:
- Totholzvolumen (m³/ha) bzw. -biomasse (Mg/ha) nach Zerfallsklassen, Kategorien (stehend, liegend, Stubben), Größenklassen und Baumarten;
- Spezielle Totholzcharakteristika wie Mikrostrukturen, Vorhandensein von Rinde, etc.
- Präsenz und Abundanz totholzbewohnender oder -nutzender Tier-, Pilz- und Pflanzenarten

Aufnahmezeitraum (Messwiederholungen):
- Vorinventur zur Quantifizierung und Charakterisierung der bereits vorhandenen Totholz-vorräte („deadwood legacy“)
- Initialinventur zur Quantifizierung und Charakterisierung des unmittelbar durch die Re-naturierungsmaßnahmen neu geschaffenen Totholzes
- Nachfolgend periodische Inventuren ca. alle 5 Jahre zur Charakterisierung der Abbauprozesse des vorhandenen Totholzes und zur Quantifizierung neuen, durch Mortalität entstandenen Totholzes

Technische Möglichkeiten der Probenahme:

destruktiv:
- Vermessung der Totholzvorräte (Dimensionen gemäß Stichprobendesign; feste Probeflächen vs. Linienstichproben; siehe Tab. 2 unten aus OEHMICHEN 2007),
- Klassifizierung des Totholzes in vorgegebene Kategorien (Art, Zerfallsklasse, etc.),
- Abundanz von totholzbesiedelnden Pflanzenarten (Art, Deckungsgrad, etc.),
- Beobachtung von höhlenbewohnenden Vögeln und Fledermäusen (steh. Totholz),

teilweise destruktiv: Fang und Bestimmung von saproxylische Insekten (z.B. mit Eklektoren),

destruktiv: Holzprobenahmen zur Bestimmung von Trockensubstanz und Holzdichte,
Probenahmen zur Bestimmung von Pilzarten im Holz
Anordnung auf der Fläche:

- Stichprobendesign zur Erfassung der Totholzvorräte: Abwägung zw. festen Probeflächen und Linienstichproben,

<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Linienstichprobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>- einfache Anwendung</td>
<td>- einfache Anwendung, kosteneffizient, schnell</td>
</tr>
<tr>
<td>- Erfassung der Gesamtbiomasse</td>
<td>- sehr hohe Genauigkeiten</td>
</tr>
<tr>
<td>- für Langzeitmonitoring geeignet</td>
<td>- flexible räumliche Ausrichtung/Anpassung</td>
</tr>
<tr>
<td>- Flächengröße kann an jeweiligen Bestand angepasst werden</td>
<td>- günstig in dichten Beständen bzw. bei dichter Vegetation</td>
</tr>
<tr>
<td>- Erfassung von stehendem und liegendem Totholz, Baumsäumpfen und Wurzelstöcken auf derselben Fläche</td>
<td>- weniger Messungen pro Baum</td>
</tr>
<tr>
<td>- schwierige Messung von liegendem Totholz bei dichter Vegetation/Bestand</td>
<td></td>
</tr>
<tr>
<td>- für Langzeitmonitoring große Flächen erforderlich</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>- kosten- und zeitintensiver</td>
</tr>
<tr>
<td>- mehr Messungen pro Totholzobekt</td>
</tr>
<tr>
<td>- Größe der Probefläche beeinflusst Genauigkeit</td>
</tr>
<tr>
<td>- schwierige Messung von liegendem Totholz bei dichter Vegetation/Bestand</td>
</tr>
<tr>
<td>- für Langzeitmonitoring große Flächen erforderlich</td>
</tr>
<tr>
<td>- Totholzobekte müssen zufällig verteilt sein</td>
</tr>
<tr>
<td>- Totholzobekte müssen horizontal liegen</td>
</tr>
<tr>
<td>- Totholzstücke müssen zylindrisch sein</td>
</tr>
<tr>
<td>- Trasenkästigke ist entscheidend für erwartete Genauigkeiten</td>
</tr>
<tr>
<td>- Baumstämpfe und Wurzelstücke können nicht erfasst werden</td>
</tr>
<tr>
<td>- für Langzeitmonitoring nicht geeignet</td>
</tr>
</tbody>
</table>

(aus: OEHMICHEN 2007)

- Erfassung von Tier- und Pflanzenarten z.B. an einzelnen Intensiv-Stämmen (z.B. stehendes Totholz mit Höhlenstrukturen, liegendes starkes Totholz, usw.)
- Destruktive Probenahmen an Totholz außerhalb der Probeflächen bzw. Linientransekte

Referenzen und Literaturempfehlung:

11.3 Indikatoren-Steckbrief Beispiel II: Feinwurzeln

Untersuchungsobjekt: Feinwurzeln

Arbeitshypothesen zur Ableitung konkreter Zielformulierungen:

Zielformulierung:

- Veränderungen der räumlichen Muster in der Feinwurzelverteilung,
- Erhöhung der Nischenvielfalt und Verbesserung des Verjüngungspotenzials,
- Steigerung der unterirdischen Heterogenität (Wuchsräume, Ressourcenverfügbarkeit),
- Erzeugung unterirdischer Nekromasse mit Auswirkung auf den Bodenwasserhaushalt und die Bodenfauna,
- Nachvollziehbarkeit von Konkurrenzmechanismen

Messgrößen zur Charakterisierung:

- Erfassung der artsspezifischen Feinwurzelmasse (g/cm²), Feinwurzelverteilung (maximale Ausbreitung in vertikaler und horizontaler Richtung), und Berechnung der flächenspezifischen Feinwurzeldichte (g/m²),
- Bestimmung der Nekromasse (g/cm³),
- Erfassung der Feinwurzeldynamik nach Entnahme bzw. Absterben einzelner Individuen im Oberstand (Einwachsende oder absterbende Feinwurzeln in g/cm³)

Aufnahmezeitraum (Messwiederholungen):

Vergleichende Wurzelbohrungen (vor und nach Etablierung der Behandlungsvarianten) von Frühjahr bis Herbst (periodisches Scannen bei der Verwendung von Rhizotronen)

Anordnung auf der Fläche:

Je nach Zielsetzung sind zwei wesentliche Beprobungsansätze möglich:

1. die repräsentative Entnahme bzw. dauerhafte Etablierung auf Ebene des Plots, um die Wirkung der jeweiligen Behandlungsvariante zu dokumentieren (Tiefenstufen können je nach Kernfrage variert werden),
2. die Abbildung räumlicher Muster und Interaktionen zwischen Bäumen oder Baumartenpaaren kann über das Anlegen von Transekten realisiert werden (Abstände zwischen den Probepunkten zwischen 0,2 m – 1 m; Tiefenstufen ebenfalls je nach Kernfrage variierbar).
Technische Möglichkeiten der Probennahme:

destruktiv

Wurzelbohrer

teilweise destruktiv

Mini-Rhizotron

Maße: Ø 5 cm, Tiefe bis 40–70 cm

Referenzen:

11.4 RenaKi-Publikationen