# Titel:Entwicklung von kostengünstigen Mikrostrukturreaktorenfür die Lehre und Forschung

**Aktenzeichen:** 24615/31

Verfasser: DC Swen Körsten

Dr. Kristina Dubnack

Institution: FSU Jena

Institut für Technische Chemie und Umweltchemie

Lessingstraße 12

07743 Jena

Abschlussbericht

# Entwicklung von kostengünstigen Mikrostrukturreaktoren für die Lehre und Forschung

In Zusammenarbeit mit der Little Things Factory Ilmenau









seit 1558

# Inhalt

| Abbildungs- und Tabellenverzeichnis                                                                      |
|----------------------------------------------------------------------------------------------------------|
| Zusammenfassung7                                                                                         |
| Einleitung                                                                                               |
| Mikroreaktionstechnik                                                                                    |
| Mikrostrukturreaktoren                                                                                   |
| Mikrostrukturierte Elemente aus Glas9                                                                    |
| Photokatalyse                                                                                            |
| Erarbeitung eines Praktikumsversuchsaufbaus13                                                            |
| Konzeption der Glasmikroreaktoren13                                                                      |
| Entwicklung der Peripherie                                                                               |
| C-Profil Anschluss                                                                                       |
| Fluidzuführung16                                                                                         |
| Temperierung18                                                                                           |
| Kostenrechnung                                                                                           |
| Erarbeitung geeigneter Praktikumsversuche 20                                                             |
| Photomikroreaktoren                                                                                      |
| Einsatz von LEDs als Lichtquelle für die Photokatalyse 21                                                |
| Entwicklung der Photomikroreaktoren 23                                                                   |
| Literatur                                                                                                |
| Anhang                                                                                                   |
| Hydrolyse von Essigsäurechlorid als Demonstrationsbeispiel für exotherme Reaktionen in<br>Mikroreaktoren |
| Landolt–Zeitreaktion                                                                                     |
| Nitroaldolreaktion – Henry-Reaktion                                                                      |
| Reduktion von p-Nitrotoluol zu p-Aminotoluol50                                                           |

# Abbildungs- und Tabellenverzeichnis

| Abbildung 1 : | Funktionsebenen eines Mikromischers aus Glas mit integriertem Wärmetausche               | er - |
|---------------|------------------------------------------------------------------------------------------|------|
|               | [LTF]                                                                                    | 10   |
| Abbildung 2:  | Möglichkeiten des strömungstechnischen Anschlusses                                       | 11   |
| Abbildung 3:  | Katalyse am Halbleiter <sup>[4]</sup>                                                    | 12   |
| Abbildung 4:  | Glasmikromischer/ Verweilzeitmodul aus Glas Typ LTF-VS                                   | 13   |
| Abbildung 5:  | Anschlussschiene                                                                         | 13   |
| Abbildung 6:  | Mikroreaktor mit C-Profil Anschluss                                                      | 14   |
| Abbildung 7:  | Chromatographie-Anschluss des Herstellers Upchurch Scientific: links oben gelb           | er   |
|               | Dichtring (P300); links unten schwarze Anschluss-Schraube (P301); rechts                 |      |
|               | zusammengesetzter Anschluss mit Teflonschlauch                                           | 14   |
| Abbildung 8:  | Darstellung des Anschlusssystems: links als Explosionszeichnung; rechts mit              |      |
|               | montierten Anschlüssen                                                                   | 15   |
| Abbildung 9:  | LTF-X-Mischer mit nachgeschalteter Verweilzeitstrecke aus der ersten Phase der           | •    |
|               | Entwicklung                                                                              | 16   |
| Abbildung 10: | schematischer Aufbau der Schwerkraftdosierung                                            | 16   |
| Abbildung 11: | Praktikumsaufbau der Schwerkraftdosierung                                                | 17   |
| Abbildung 12: | Spritzenpumpen                                                                           | 18   |
| Abbildung 13: | Temperierung im Wasserbad/ Temperierung durch Peltierelement                             | 19   |
| Abbildung 14: | Entwicklung der LED-Beleuchtung                                                          | 22   |
| Abbildung 15: | Aufheizkurve der Diodenkörper bei unterschiedlichen Betriebsweisen des                   |      |
|               | Diodenarrays                                                                             | 22   |
| Abbildung 16: | Photomikroreaktor zusammengesteckt                                                       | 23   |
| Abbildung 17: | Glasverteiler                                                                            | 23   |
| Abbildung 18: | Einzelteile des Gehäuses für den Photomikroreaktor von links nach rechts:                |      |
|               | Unterseite mit Silikondichtung, Oberseite, seitlicher Verbinder                          | 24   |
| Abbildung 19: | Katalysatorträger für Photomikroreaktor als CAD-Modell-Zeichnung links und als           | ;    |
|               | Bild rechts                                                                              | 24   |
| Abbildung 20: | UV-VIS Spektrum ethanolische 4-Aminotoluol-Lsg. c = 10 <sup>-4</sup> mol/L               | 53   |
| Abbildung 21: | UV-VIS-Spektrum ethanolische 4-Nitrotoluol-Lsg. C = 10 <sup>-4</sup> mol/L               | 54   |
| Abbildung 22: | UV-VIS-Spektrum Ausgangslösung und Reaktionslösung c = 10 <sup>-4</sup> mol/L in Ethanol | . 54 |

| Tabelle 1: | Kostenrechnung für Arbeitsplatz Syntheseapparatur     | 19 |
|------------|-------------------------------------------------------|----|
| Tabelle 2: | Kostenrechnung für Arbeitsplatz Mikroreaktionstechnik | 20 |
| Tabelle 3: | Lichtquellen für die Photochemie                      | 21 |

6

## Zusammenfassung

Das Ziel des Projektes war die Etablierung der Mikroreaktionstechnik in der universitären Lehre und in chemischen Forschungslaboratorien für organische Synthesen. Wichtiger Bestandteil war die Entwicklung eines einfachen Bausatzes mit zwei Typen von mikrostrukturierten Komponenten aus Glas für Standartsynthesen im Labor. Im Folgenden sollen nun die einzelnen Projekt- und Entwicklungsabschnitte vorgestellt werden.

Mit Hilfe der Projektarbeiten konnte gezeigt werden, dass die Einführung der Mikroreaktionstechnik in die universitäre Lehre und in die chemischen Forschungslaboratorien für organische Synthesen mit kostengünstigen Mikrostrukturreaktoren durchführbar ist. Eine Reihe von organischen Synthesen ist in den beschriebenen Systemen durchführbar.

Wichtiger Bestandteil war die Entwicklung eines einfachen Bausatzes mit zwei Typen von mikrostrukturierten Komponenten aus Glas für Standartsynthesen im Labor. Zur unkomplizierten Anwendung der Mikroreaktionstechnik tragen eine Anschlussschiene zum einfachen aufschieben und fluidische Anschlüsse mit standardisierten Verbindungen aus dem Bereich der Chromatographie bei. Die Komponenten mit bewährten Mikrostrukturen aus chemisch inerten und transparenten Borosilikatglas der Firma Little Things Factory GmbH dienen der Überführung der diskontinuierlichen in die kontinuierliche Arbeitsweise und zur Aneignung der experimentellen Fähigkeiten in der Praxis. Darüberhinaus wurden Vorschläge zur Fluidzuführung und Temperierung der Mikroreaktoren gegeben und miteinander verglichen.

Ein weiterer Schwerpunkt war die Einführung in die Photochemie und Photokatalyse in Mikroreaktoren und die Weiterentwicklung des Photomikroreaktors von Gorges<sup>[13]</sup>. Eine Vereinfachung im Zusammenbau des Photomikroreaktors durch steckbare Verbindungen ohne die Verwendung von Schrauben konnte erreicht werden. Am Beispiel der Photoreduktion an Titandioxid wird die Anwendung des Photomikroreaktors demonstriert.

Die in dieser Arbeit beschriebenen Versuchsaufbauten können in das organisch chemische Grundpraktikum integriert oder für kontinuierliche Synthesen im Forschungslabor angewandt werden.

Von der LTF Ilmenau GmbH wird ein Bausatz angeboten, der alle notwendigen, nicht im Syntheselabor vorhandenen Bauteile beinhaltet (4 Reaktoren, 4 Stirnflächenanschlüsse, 1 Einbaurahmen, 1 Stativstange mit Kontermutter, 8 Schrauben für die Montage im Einbaurahmen). Für das organisch chemische Praktikum können so zwei Arbeitsplätze mit einem Kostenaufwand von ca. 800 Euro ausgestattet werden.

## Einleitung

Die Mikroverfahrenstechnik stellt eine junge, innovative Verfahrenstechnik mit hohem Anwendungspotenzial dar. Um das hohe Potenzial der Mikroreaktionstechnik zur effizienten, umweltschonenden und bedarfsgerechten Erzeugung chemischer Produkte nutzen zu können, ist es von essentieller Bedeutung, dass qualifizierte Fachleute zur Verfügung stehen. Es sollten einfache und preiswerte Mikrostrukturreaktoren sowie die dazugehörenden Versuchsaufbauten entwickelt werden. Diese können während der Chemieausbildung zur Demonstration sowohl der Grundprinzipien der Mikroreaktionstechnik als auch ihrer verschiedenen Anwendungsfelder verwendet werden.

## Mikroreaktionstechnik

Mikroreaktoren bzw. mikroverfahrenstechnische Komponenten erfahren in den letzten fünfzehn Jahren ein zunehmendes Interesse sowohl in der akademischen Forschung als auch in der industriellen Anwendung.

## Mikrostrukturreaktoren

Das Prinzip der Miniaturisierung ist im Grunde eine Erfindung der Natur und so alt wie das Leben auf der Erde. Jedes Lebewesen besteht aus einer Vielzahl von leistungsfähigen Mikrosystemen, den Körperzellen. Diese Zellen sind verantwortlich für Stoff- und Energietransport, die Stoff- und Energieumwandlung, die Kommunikation untereinander und mit benachbarten Zellen und die Fortpflanzung der Lebewesen. Ganz im Vorbild der Natur entwickelt der Mensch technische Mikrosysteme mit speziellen Eigenschaften seit Beginn der 1990er Jahre. In einem Mikrosystem sind verschiedene Funktionen, Materialien, Komponenten und Technologien aus den Bereichen der Elektronik, Mechanik, Optik und Fluidik in einem System miteinander verknüpft. Diese Systeme erfüllen ihre Aufgaben meist effizienter und preiswerter als die bis dahin verwendete Technik. In der Kommunikationselektronik, der Energietechnik, im Maschinen- und Automobilbau, in der Logistik, der Medizintechnik und in der Chemie und Pharmazie beispielsweise übernehmen Mikrosysteme heute vielfältige Funktionen nahezu unbemerkt. Viele neue Technologien werden durch die Mikrosystemtechnik als Basis erst greifbar und können in Produkte eingegliedert werden. Wird die Mikrosystemtechnik z.B. auf die chemische Verfahrenstechnik projiziert, ergeben sich mit der resultierenden Mikroverfahrenstechnik innovative Möglichkeiten. Deren Anwendung führt zu neuartigen, kostengünstigen und energieeffizienten Synthesewegen. Die mikroverfahrenstechnische Anlage kann nach Bedarf aus Modulen wie Mikromischer, Mikrowärmetauscher oder Mikroreaktoren zusammengebaut und an die geforderten Bedingungen vor Ort angepasst werden. In den geringen Reaktionsvolumen wird die Verwendung toxischer, explosiver und schwer handhabbarer Stoffe sicherer oder überhaupt erst möglich und auf die benötigten Mengen begrenzt. Die Miniaturisierung und der Aufbau intelligenter Reaktionssysteme in Multi-Purpose-Anlagen führen zu einer Intensivierung und Effizienzsteigerung vorhandener Prozesse bzw. eröffnen Möglichkeiten zu neuen oder bisher nicht praktizierbaren Prozessen. Hierdurch können bewährte Herstellungsverfahren modernisiert und Entwicklungs- und Produktionskosten in der chemischen Industrie und der Pharmaindustrie eingespart werden. Aber auch ökologische Aspekte wie die ressourcenschonende Synthese von Produkten, die Einsparung von Energie und die Senkung der Abfallströme lassen der Mikroreaktionstechnik Bedeutung zukommen. Sie leistet somit nicht nur einen Beitrag zur Wettbewerbssteigerung sondern auch zum Umweltschutz und nachhaltigen Wirtschaften.

Zum jetzigen Zeitpunkt ist die Verwirklichung einzelner Komponenten und Verfahrensschritte nachgewiesen. Die Mikroreaktionstechnik als junge und innovative Technologie wird von einzelnen großen Unternehmen (z.B.: Clariant, Degussa, Merck) angenommen und es beginnt eine langsame Einführung der Komponenten in die Produktion. Aber es fehlen noch große beispielhafte Vorhaben Der die Langzeitstabilität, Anlagensicherheit, und Wirtschaftlichkeit beweisen. hohe Investitionsaufwand, komplizierte Neuentwicklungen und die fehlende Standardisierung der verschiedenen Systeme zählen zu den technologischen Hindernissen die es noch zu überwinden gilt. Ausgebildetes Fachpersonal ist für die Planung von neuen Synthesewegen, innovativen Prozessen und die erfolgreiche Überführung der im Labormaßstab gewonnen Erkenntnisse in die industrielle Praxis notwendig.

Allerdings wird die Mikroreaktionstechnik in der universitären Lehre kaum berücksichtigt und die Ausstattung der Universitäten mit mikroverfahrenstechnischen Anlagen im Praktikum ist zurzeit noch unbefriedigend. Nur gut ausgebildete Chemiker und Ingenieure, die mit den Vorteilen und den Grenzen der Mikroreaktionstechnik vertraut sind, können erfolgreich die aufgezeigten Hindernisse beseitigen. Folglich muss die Mikroreaktionstechnik Teil der Ausbildung und des Praktikums an den Universitäten, speziell in den Fächern Chemie und Chemieingenieurwesen werden. Die an die Bedürfnisse der universitären Lehre angepasste Mikroreaktionstechnik muss kostengünstig, zuverlässig und robust sein und sichtbare Mikrokanäle zur direkten Beobachtung aufweisen.

## Mikrostrukturierte Elemente aus Glas

Glas ist ein traditioneller Werkstoff für Geräte im Labor und in der Technik. Es ist resistent gegenüber vielen Chemikalien, wie Wasser, Salzlösungen, Säuren, organischen Lösungsmitteln und Basen. Seine Transparenz und die definierten optischen Eigenschaften erlauben zum einen die direkte Beobachtung der Prozesse bzw. der Reaktion und zum anderen die direkte Analyse mit spektroskopischen Methoden. Neben diesen Eigenschaften sind vor allem die geringen Werkstoffkosten ein entscheidendes Kriterium für den Einsatz von Glas. Dem steht jedoch eine meist aufwendige und teure Bearbeitung gegenüber. Neben Quarzglas und photostrukturierbarem Glas wird Borosilikatglas am häufigsten für die Herstellung von Mikroreaktoren verwendet. Borosilikatglas hat einen höheren Massenanteil an Quarzglas (80%) als andere Glassorten, was neben dem Zusatz von Bortrioxid für seine Eigenschaften birgt.

Mikrostrukturierte Bauteile aus Glas sind aus mehreren dünnen Schichten hergestellt. Jede Schicht stellt eine Funktionsebene, z.B. Mischer oder Wärmetauscher, dar (Abbildung 1). Wichtige Strukturelemente bei der Herstellung von flachen, planaren Schichten sind Hohlräume und Löcher, die bei Überlagerung und bei fester Verbindung Mikrostrukturen und Mikrokanäle incl. strömungstechnischer Anschlüsse ergeben. Bei der Verbindung sind Dichtheit der Schichten und Beständigkeit gegenüber Chemikalien von hoher Priorität.



Abbildung 1 : Funktionsebenen eines Mikromischers aus Glas mit integriertem Wärmetauscher [LTF]

Die Strukturierungsmöglichkeiten von Glas sind abhängig von den chemischen und thermischen Eigenschaften. Glas besitzt zwar einen hohen Elastizitätsmodul **E**, aber Kerben und Risse sind Verursacher von Brüchen bei mechanischer Belastung. Wegen der geringen Wärmeleitfähigkeit (0,9-1,2 W/mK) wird Glas bei Prozessen mit hohem und effizientem Wärmetransfer zur zweiten Wahl. Temperaturänderungen verursachen Temperatursprünge im Glas und die thermische Ausdehnung erzeugt mechanische Spannung aber keine plastische Verformung. Die Temperaturbeständigkeit ist an dieser Stelle ein Vorteil, denn je größer die Beständigkeit umso geringer die lineare thermische Expansion. Allerdings sind die hohe chemische Beständigkeit, die thermische Stabilität und die Brüchigkeit bei Belastung für den Prozess der Strukturierung unter Verwendung klassischer Methoden ein Nachteil.

Die Strukturierung von Glas, in der Mikrostrukturierungstechnik, erfolgt mit Hilfe von Ätzmethoden der maskierten Glasteile. Mikrostrukturierungstechniken beruhen immer auf der Maskierung des Werkstücks, d.h. Stellen die nicht bearbeitet werden sollen, werden maskiert. Das Ätzen unterscheidet sich nach der Art der Entfernung des bearbeiteten Materials in Trocken- und Nassätzen. Beide Varianten werden zusätzlich noch in isotropes und anisotropes Ätzen unterschieden. Die Methode kann hohe Auflösungen bis hin zu wenigen Mikrometern erreichen. Um noch feinere Strukturen im Glas zu erzeugen, wurde photostrukturierbares Glas entwickelt. Eine Photomaske (Glas oder Polymer) wird auf das Glas aufgetragen und mit UV-Licht ( $\lambda = 310$  nm) bestrahlt. Aufgrund der Bestrahlung bilden sich in den nichtmaskierten Gebieten Kristalle, die herausgelöst werden können. Der genaue Ablauf der Photostrukturierung wird an dieser Stelle nicht erklärt und kann in der Fachliteratur nachgelesen werden<sup>[1]</sup>. Eine andere Methode, das Mikrosandstrahlen, ist eine weitverbreitete Technik zur Erzeugung von vielfältigen Mikrostrukturen aus Glas. Mit dieser Technik können einfach und produktiv Substrate, wie Glas, Keramik und Silizium, kostengünstig bearbeitet werden. Die Werkstücke werden beim Mikrosandstrahlen mit einer Maske versehen und parallel bearbeitet. Die Maske wird fotolithografisch erstellt, wodurch eine sehr enge Lagetoleranz erzielt wird. Beliebige laterale Strukturen bis zu 50 µm und eine hohe Strukturdichte können erzeugt werden. Die Tiefe der Mikrokanäle hängt von der Prozesszeit ab. Der Winkel der gestrahlten Konturen zur Substratoberfläche beträgt je nach zu realisierender Tiefe 70-85°, dabei werden tiefere Strukturen steiler. Die Werkstücke werden beim Mikrosandstrahlen thermisch nicht belastet und sind frei von Verzug.

Für die Bildung einer Gesamtheit aus den einzelnen strukturierten Glasschichten besitzt neben dem anodischen Bonden und dem direkten Bonden von Silizium das Glasfusionsbonden die größte Bedeutung. Die Oberflächen der Glasschichten werden mit wässriger Ammoniak/Wasserstoffperoxid-Lösung hydrophil ausgestattet und danach übereinander gelegt. Durch Kondensation bilden sich bei 350°C dauerhafte chemische Bindungen zwischen den Schichten. Der Bindungsprozess verläuft ohne plastische Verformung der erzeugten Strukturen. Wenn, wie bei geätztem Glas, die Oberflächen nicht planar sind, wird das Bonden unter Druck ausgeführt.

Zur Zu- und Abführung der Fluide in und aus dem Mikromischer sind strömungstechnische Anschlüsse notwendig. Zur Förderung der Fluide werden üblicherweise Schläuche aus PTFE mit einem Durchmesser von 1/16" oder 1/8" verwendet. Die Schläuche werden, um Verbindungen herstellen zu können, mit Anschlussstücken mit ¼" UNF-Gewinde versehen. Um die Schläuche mit dem Reaktor zu verbinden, gibt es drei Möglichkeiten:

- a) Verwendung eines Mantels mit Bohrungen,
- b) direkter selbsttragender Anschluss (Hohlschrauben),
- c) Gewinde aus Glas (Muttergewinde) werden direkt auf Glasreaktor gebonded<sup>[1]</sup>.



Abbildung 2: Möglichkeiten des strömungstechnischen Anschlusses

## **Photokatalyse**

Die Photokatalyse erfährt immer mehr Bedeutung in Wissenschaft und Technik. In der Literatur werden immer häufiger photokatalytische Prozesse vor allem an Halbleiterkatalysatoren in der Gasund Flüssigphase beschrieben. Die Bestrahlung eines Halbleiters z.B. Titandioxid TiO<sub>2</sub> mit Sonnenlicht zum Abbau organischer Substanzen bei der Reinigung von Wasser und Luft ist weitgehend untersucht<sup>[2,3]</sup>. Zusätzlich besteht aber auch die Möglichkeit, die Photokatalyse an TiO<sub>2</sub> für die Synthese, im speziellen Fall für die Reduktion und die Bildung von C-C-Bindungen, zu nutzen. Um beide Pfade der Katalyse zu verstehen, ist es notwendig, den Aufbau des Katalysators und die Vorgänge bei der Bestrahlung zu verstehen.

In Abbildung 3 wird der Ablauf einer Photokatalyse an einem Halbleiter beschrieben. Durch Zufuhr von Energie (z.B. Licht), die der Bandlückenenergie gleich oder größer ist, lassen sich Elektronen vom Valenz- in das Leitungsband überführen (1). Daraus resultieren positive Elektronenlöcher ( $h^+$ ) im Valenzband (p-Leitung) und negative Elektronen ( $e^-$ ) im Leitungsband (n-Leitung). Diese Erzeugung von Ladungsträgern ist für die Photokatalyse wichtig. Im Gegensatz zu Metallen (Leitern) steigt die Konzentration an Ladungsträgern mit zunehmender Temperatur an. Die gebildeten Elektronen-Loch-

Paare können von verschiedenen Oberflächenzentren eingefangen werden und stehen als reaktive Zentren (Index r;  $\mathbf{h}_{r}^{+}$ ,  $\mathbf{e}_{r}^{-}$ ) für den Elektronentransfer mit Akzeptor- und Donormolekülen zur Verfügung. Durch Reduktion (**3**) des Akzeptors **A** und Oxidation (**4**) des Donors **D** entstehen die Primärprodukte **A**<sup>--</sup> und **D**<sup>+-</sup> welche zu weiteren stabilen Redoxprodukten **A**<sub>Red</sub> und **D**<sub>Ox</sub> weiterreagieren (**5**,**6**). Gegenteilige Prozesse wären die primäre Rekombination der Ladungstrennung zwischen den Bändern (**1**) oder eine sekundäre Rekombination an den Oberflächenzentren (**2**) und den Primärprodukten (**7**)<sup>[2,4-6]</sup>.





Wenn die reaktiven Elektronen  $e_r$  von Sauerstoff O<sub>2</sub> aufgenommen (Reduktion) werden und die reaktiven Löcher h<sup>+</sup>, Wasser oxidieren, entstehen Hydroxylradikale als reaktive Spezies für den Abbau organischer Substanzen. Der photooxidative Abbau von Nitroaromaten zum Beispiel ist hinreichend untersucht<sup>[7-9]</sup>. Bei Abwesenheit von Sauerstoff spielt die reduktive Chemie der reaktiven Elektronen die Hauptrolle. Es wird aus dem Reagenz ein Radikal erzeugt, welches für chemische Reaktionen, wie Bindungsknüpfung oder Addition, zur Verfügung steht. Typisch für diese Katalyse ist die Übertragung von Protonen, z.Bsp. bei der photokatalytische Reduktion von organischen Verbindungen, wie Nitroaromaten, welche bei Anwesenheit von Elektrondonoren und bei Abwesenheit von Sauerstoff durchgeführt werden kann. Als gute Elektrondonoren fungieren Methanol, Isopropanol oder Ethanol. Der Donor überträgt Elektronen an das Valenzbandloch h<sup>+</sup>, des Titandioxids und verhindert die Rekombination. Zusätzlich werden vom Donor Protonen auf das zu reduzierende Molekül übertragen. Die Abwesenheit von Sauerstoff erhöht die Effizienz der Reduktion der organischen Verbindung. Andere Mechanismen beruhen auf der Übertragung von Elektronen vom aktivierten Katalysator auf das Reagenz unter Bildung von Radikalkationen oder Radikalanionen. Der Katalysator wird durch Rückübertragung eines Elektrons regeneriert. Die dritte Möglichkeit ist die Einbeziehung von Metallzentren auf der Oberfläche des Katalysators<sup>[10]</sup>.

# Erarbeitung eines Praktikumsversuchsaufbaus

## Konzeption der Glasmikroreaktoren

Im Rahmen des Projektvorhabens sollten preiswerte Praktikumsaufbauten entwickelt werden. In einer ersten Stufe war es notwendig, für verschiedenste Testreaktionen geeignete Mikroreaktoren zu konzipieren.

Hierzu wurden in einem ersten Schritt die von der LTF GmbH Ilmenau zur Verfügung gestellten verschiedenen Glasmikroreaktoren auf ihre Eignung getestet (Modellbeispiele siehe Abbildung 4).





13

#### Abbildung 4: Glasmikromischer/



In einem weiteren Schritt erfolgte dann die Anpassung an die gewünschten Versuchsbedingungen. So wurde einerseits die Länge der Mikroreaktoren vergrößerst, um die Untersuchungen bei verschiedenen Temperaturbereichen im Wasserbad zu gewährleisten. Um während der Versuche die Reaktionstemperatur möglichst genau bestimmen zu können, wurde ein weiterer Kanal für den Temperaturfühler eingebracht (siehe Abbildung 6).

## **Entwicklung der Peripherie**

Um eine breite Einführung der Mikroreaktionsversuche in der universitären Lehre zu gewährleisten, ist es notwendig gewesen, einfache und möglichst im Labor vorhandene Geräte zu nutzen. Die Peripherie sollte so geschaffen sein, dass sie für alle Versuche Anwendung findet.

## **C-Profil Anschluss**

Für die fluidische Verbindung und die Fixierung in einem experimentellen Aufbau der Mikroreaktoren aus Glas wurde eine Anschlussschiene (C-Profil) in Kooperation mit der Little Things Factory GmbH (LTF) entwickelt. Sie ist in Abbildung 5 dargestellt.



Abbildung 5: Anschlussschiene

Ziel war die Zu- und Abführung der Medien zu bzw. von nur einer Seite des Reaktors. Zusätzlich sollte der Anschluss die Möglichkeit zur Befestigung in einen experimentellen Aufbau mit Stativmaterial bieten.



#### Abbildung 6: Mikroreaktor mit C-Profil Anschluss

Für die fluidische Verbindung bildeten standardisierte Anschlüsse, wie in Abbildung 7 zu sehen, aus dem Niederdruckbereich der Chromatografie (HPLC) die Grundlage.



Abbildung 7: Chromatographie-Anschluss des Herstellers Upchurch Scientific: links oben gelber Dichtring (P300); links unten schwarze Anschluss-Schraube (P301); rechts zusammengesetzter Anschluss mit Teflonschlauch

Die Verschraubung wird bei diesem System mit den Fingern eingeschraubt und gefestigt. Es ist kein Schraubenschlüssel o.ä. notwendig. Der gelbe Dichtring schafft einen dichten Anschluss der Verbindung. Es ist nicht notwendig den verwendeten Schlauch zu flanschen. Das Gewinde ist ein in der Chromatografie übliches ¼" 28 UNF-Gewinde (Durchmesser außen: 6,35 mm, Durchmesser Kernloch: 5,50 mm, Gänge je Inch: 28, Steigung: 0,907 mm). Dieses Gewinde wurde auf das C-Profil übertragen. Der Kontakt des C-Profils mit dem Glasmikroreaktor wird durch aufschieben des Profils auf den Reaktor, wie bei einer Schiene, erreicht. Dazu ist am Reaktor eine Nut notwendig, die das Profil führt und hält. Die fluidischen Ein- und Ausgänge des Mikroreaktors sind oberhalb der Nut an der Stirnseite angeordnet. Die Eingänge der Mikroreaktoren sind deckungsgleich mit der Schlauchöffnung des Chromatographieanschlusses angeordnet. Die Deckung wird durch einen Anschlag, den bündigen Abschluss des C-Profils mit dem Mikroreaktor an den Außenkanten, gegeben. Nach dem Aufschieben des Profils wird beim links und rechtsseitigen Halten die Deckung

gewährleistet. Der Außendurchmesser der Schläuche muss 1/8" (ca. 3,0 mm) betragen. Der Außendurchmesser des gelben Dichtrings ist gleich der Breite der Stirnseite des Mikroreaktors (5 mm). Kleinere Schlauchdurchmesser, z.B. 1/16" (ca. 1,5 mm) sind nicht deckungsgleich mit den Eingängen der Mikroreaktoren und verursachen einen Verschluss des Schlauches. Größere Schlauchdurchmesser benötigten eine größere Dichtfläche als die zur Verfügung stehende an der Stirnseite. Die Anpresskraft infolge des Anzugsmomentes des Schlauchanschlusses dichtet die Anschlussstelle ab. Das Prinzip ist in Abbildung 8 skizziert dargestellt.



Abbildung 8: Darstellung des Anschlusssystems: links als Explosionszeichnung; rechts mit montierten Anschlüssen

In der ersten Phase der Entwicklung des Anschlusses war für jeden Ein- bzw. Ausgang ein einzelnes C-Profil vorgesehen, wie in Abbildung 9 zu sehen. Diese Idee wurde nach einer kurzen Erprobungsphase schnell verworfen, weil die Realisierung der Deckungsgleichheit kompliziert war. Es lag kein richtungsgebender Anschlag vor. Ein weiterer Nachteil war der geringe Abstand der einzelnen Anschlüsse, welcher die Handhabung erschwerte. Bei dieser Variante besaßen die Schläuche für die Zu- und Abführung der Medien einen Außendurchmesser von 1/16" und die Mikroreaktoren waren kleiner und dünner. Das führte in der Anwendung schnell zu Bruch. Mit der Einführung der oben beschriebenen C-Profil-Schiene nahmen die Größe und die Dicke der Reaktoren und damit die Robustheit zu.



Abbildung 9: LTF-X-Mischer mit nachgeschalteter Verweilzeitstrecke aus der ersten Phase der Entwicklung

#### Fluidzuführung

Für die Durchführung kontinuierlicher Reaktionen im Mikroreaktor ist die Zu- und Abführung der entsprechenden Medien von besonderem Interesse. Die Arbeiten konzentrierten sich vordergründig auf zwei Möglichkeiten der Dosierung. Die sogenannte Schwerkraftdosierung und die Dosierung unter Zuhilfenahme von Spritzenpumpen standen im Fokus der Untersuchungen. In Abbildung 10 ist der schematische Aufbau der Schwerkraftdosierung zu sehen.



Abbildung 10: schematischer Aufbau der Schwerkraftdosierung

Die Vorteile des Verfahrens sind in den günstigen Anschaffungskosten und in der pulsationsfreien Arbeitsweise zu sehen. Es können Volumenströme von etwa 150 ml/h erzeugt werden (Förderung mit hydrodynamischem Druck). Dieser Versuchsaufbau bietet die Möglichkeit, die Förderung mit Druckluft oder Schutzgas durchzuführen.

Demgegenüber steht die nicht ganz einfache Handhabung des Verfahrens.



Abbildung 11: Praktikumsaufbau der Schwerkraftdosierung

In der obigen Abbildung ist der Laboraufbau der Schwerkraftdosierung dargestellt.

Die Durchführung der Versuche bei Anwendung der Spritzenpumpen erwies sich als wesentlich einfacher. Abbildung 12 zeigt den schematischen Aufbau des Versuchsstandes.



Der einfachen Handhabung und sehr guten Steuerung der einzelnen Flussgeschwindigkeiten steht jedoch der hohe Anschaffungspreis gegenüber.

Vorzugsweise wird die Arbeit mit den Spritzenpumpen empfohlen, da die kontinuierliche und störungsfreie Zuführung der Reaktionsmedien entscheidend für den Fortgang der Reaktion ist.

## Temperierung

Ein entscheidender Vorteil bei der Anwendung der Mikroreaktionstechnik ist die Durchführung von endothermen und exothermen Reaktionen.

Für konventionelle Verfahren stehen verschiedene Heizmethoden zur Verfügung wie zum Beispiel: Heizpilz, Ölbad, Mikrowelle. Der Energieverbrauch der einzelnen Methoden liegt relativ hoch und lässt sich wie folgt abstufen:

Mikrowelle < Heizpilz < Ölbad.

Bei Anwendung der Glasmikroreaktoren ist sowohl die Zuführung als auch die Abführung von Wärme auf Grund der geometrischen Struktur der Reaktoren energetisch günstiger zu gestalten.

Die durchgeführten Untersuchungen stützten sich auf die Methoden der Wasserbadtemperierung und der Temperierung mittels Peltierelement (siehe Abbildung 10). Auf diese Weise können sowohl endotherme als auch exotherme Reaktionen durchgeführt werden. Die Zu- oder Abführung der Wärme ist unproblematisch.





Abbildung 13: Temperierung im Wasserbad/

**Temperierung durch Peltierelement** 

Die jeweiligen Temperaturen können den Reaktionen angepasst werden. Für das Eis-/Wasserbad ergibt sich ein Temperaturbereich von 0 bis 80°C und für das Peltierelement von -10 bis 80°C (auch abhängig vom Lösungsmittel).

## Kostenrechnung

Die Entwicklung des Praktikumsplatzes während der Projektlaufzeit erfolgte unter dem Gesichtspunkt: kostengünstige Mikrostrukturreaktoren für die Lehre und Forschung. In Tabelle 1 und Tabelle 2 sind für einen konventionellen und einen Arbeitsplatz Mikroreaktionstechnik die Kosten abgeschätzt worden.

| Bauteil       | Beschreibung                         | Preis in € | Anzahl | Preis in € |
|---------------|--------------------------------------|------------|--------|------------|
| Ölbad         | Edelstahlschüssel 1000 ml            | 7,00       | 1      | 7,00       |
| Rührtisch     | Magnetrührer mit Heizung             | 439,00     | 1      | 439,00     |
| Dreihals      | 100 ml NS29/32                       | 20,47      | 1      | 20,47      |
| Rührfisch     | Magnetrührstäbchen                   | 3,00       | 1      | 3,00       |
| Tropftrichter | 50 ml graduiert                      | 47,48      | 1      | 47,48      |
| Kühler        | Dimroth 300 mm NS29/32               | 55,99      | 1      | 55,99      |
| Stopfen       | Hohl-Glasstopfen spitz               | 2,74       | 3      | 8,21       |
| Schläuche     |                                      | 5,00       | 1      | 5,00       |
| Klemmen       | Schliffklammern aus Kunststoff 29/32 | 4,28       | 3      | 12,85      |
| Summe         |                                      |            |        | 599,00     |

| Bauteil                                                                | Preis in € | Anzahl | Preis in € |
|------------------------------------------------------------------------|------------|--------|------------|
| Scheidetrichter zylindrisch ungraduiert mit PTFE<br>Spindelhahn, 50 ml | 28,44      | 2      | 56,88      |
| Scheidetrichter nach Squibb mit PTFE Küken graduiert,<br>100 ml        | 40,22      | 2      | 80,44      |
| Stopfen mit Septum                                                     | 0,30       | 2      | 0,60       |
| Adapter Upchurch                                                       | 22,00      | 2      | 44,00      |
| Flangeless Ferrule 1/8                                                 | 1,45       | 4      | 5,80       |
| Flangless Male Nut 1/8                                                 | 1,45       | 4      | 5,80       |
| Teflon FEB Tubing 1/8"OD 10ft                                          | 32,74      | 1      | 32,74      |
| Peltierelement                                                         | 30,00      | 1      | 30,00      |
| Reaktor bzw. Verweiler LTF                                             | 70,00      | 2      | 140,00     |
| C-Profil-Schiene                                                       | 56,22      | 2      | 112,44     |
| Summe                                                                  |            |        | 508,70     |

 Tabelle 2:
 Kostenrechnung für Arbeitsplatz Mikroreaktionstechnik

Die Kostenaufstellung zeigt deutlich, dass der Praktikumsplatz Mikroreaktionstechnik bei Anwendung der Glasmikroreaktoren der LTF GmbH Ilmenau vergleichbar bzw. bei Anwendung der Schwerkraftdosierung sogar etwas günstiger als ein konventionell ausgestatteter Synthesearbeitsplatz ist.

## Erarbeitung geeigneter Praktikumsversuche

Für die Einführung der Mikroreaktionstechnik ins organische Syntheselabor wurde eine Reihe von Praktikumsversuchen erstellt. Einerseits soll den Studenten ein erster Einblick in die vielfältigen Möglichkeiten der Mikroreaktionstechnik gegeben werden. Andererseits könne sie auf diesem Wege sich mit den Methoden vertraut machen, erste eigene Erfahrungen im Umgang erwerben und vergleichende Betrachtungen zu konventionellen Methoden aufstellen.

Nachfolgende Reaktionen wurden im Rahmen des Projektes erarbeitet:

- Hydrolyse von Essigsäurechlorid als Demonstrationsbeispiel für exotherme Reaktionen in Mikroreaktoren
- Landolt–Zeitreaktion
- Nitroaldolreaktion Henry-Reaktion

Die Beschreibung der einzelnen Versuche ist im Anhang nachzulesen. Die Vorschrift erfolgte in Anlehnung an die im NOP veröffentlichten Praktikumsvorschriften, da sie ebenfalls dort Einzug halten werden.

## Photomikroreaktoren

## Einsatz von LEDs als Lichtquelle für die Photokatalyse

Für den Energieeintrag ist eine Lichtquelle notwendig, die im verlangten Wellenlängenbereich emittiert und eine ausreichend intensive Emission besitzt. Daher geht parallel zur Entwicklung der Photochemie eine intensive Entwicklung der dafür notwendigen Lichtquellen und spektroskopischen Methoden. Lichtquellen mit höherer Energieeinstrahlung z.B. im UV-Bereich oder mit streng monochromatischer Strahlung verbessern den photochemischen Prozess. In Tabelle 3 sind Lichtquellen für die Photochemie zusammengefasst.

| Gasentladungsstro    | ahler       | Temperaturstrahler | Laser    |           | LED                                 |
|----------------------|-------------|--------------------|----------|-----------|-------------------------------------|
| Quecksilber-Druckst  | rahler      | Wolframlampen      | Gaslase  | r         | bedrahtete LED                      |
| Xenon-Hochdrucksti   | rahler      | Halogenlampen      | Feststo  | fflaser   | SMD LED<br>(Surface Mounted Device) |
| Pulslichtquellen     |             |                    | Flüssigk | eitslaser | COB (Chip on Board)                 |
| Natriumdampfstrahler |             |                    |          |           |                                     |
| Tabelle 3: Lic       | htquellen f | ür die Photochemie |          |           |                                     |

Wichtige Strahlungsquellen sind Gasentladungsstrahler und Temperaturstrahler. In Wissenschaft und Technik gewinnen Laser und Licht Emittierende Dioden (LEDs)<sup>[11]</sup> eine ständig zunehmende Bedeutung. LEDs sind Halbleiterdioden, die nach Anlegen einer Durchlassspannung durch Rekombination von Ladungsträgerpaaren aus der Sperrschicht der Halbleiterverbindung Licht emittieren. Die emittierte Wellenlänge (Farbe) der LED wird durch die Bandlücke der Halbleiterverbindung bestimmt. Passende Bandlücken besitzen die Halbleiter, welche aus den Elementen der dritten und fünften Hauptgruppe des Periodensystems bestehen. Dazu gehören Stoffe wie Galliumphosphid (GaP), Aluminiumgalliumarsenid (AlGaAs) oder Indiumgalliumnitrid (InGaN). Von der Bandlücke sind außerdem die Durchlassspannung (2 bis 4 V) und der durch die LED fließende Strom (0,2 bis 1 A) abhängig. Der geringe Stromverbrauch zählt zu den Vorteilen der LEDs. Weitere Vorteile sind die gerichtete und monochromatische Strahlung je nach Aufbau, die kleine Bauweise, die geringen Anwendungskosten (Transport, Wartung, usw.) und die Robustheit, die zu vielen technischen Anwendungen wie im Automobilbau oder als Designelement führen. Oftmals ist aber eine Vielzahl an LEDs notwendig, um die erwünschte Leuchtstärke zu erreichen. Ein weiterer Nachteil der LEDs ist die geringe Stabilität der Halbleiterkristalle gegenüber hohen Temperaturen. Bei der Anwendung sind geeignete Maßnahmen zur Abführung der Prozesswärme notwendig, weil sonst die Kristalle und somit die LEDs zerstört werden. Offene Fragen sind bei der Energiebilanz, die den Energiebedarf bei der Herstellung ins Verhältnis zur Strahlungsintensität und -dauer stellt<sup>[12]</sup>.

Als UV-Lichtquelle für die Reaktionen im Photomikroreaktor wurden am ITUC UV-Leuchtdioden genutzt.



#### Abbildung 14: Entwicklung der LED-Beleuchtung

Um eine genügend hohe Lichtintensität in die Systeme einzutragen, ist es notwendig, mehrere UV-Leuchtdioden in Arrays zu kombinieren. Diese Dioden-Arrays können direkt angesteuert oder über ein entsprechendes Modul betrieben werden. Letzteres ermöglicht unterschiedliche Betriebsweisen der Arrays. Die Lichtintensität der Dioden ist einmal durch die Strom- und Spannungsführung regelbar und zum anderen über ein gezieltes Takten der Dioden möglich. Hierbei werden in einem Puls-Pause-Betrieb die Dioden kurzzeitig mit ihrer maximalen Leistung betrieben.

Einen weiteren Vorteil bieten die Dioden in Bezug auf ihre Temperaturführung. Im Gegensatz zu den Lampensystemen ist der Temperatureintrag durch die Dioden in das System relativ gering. Bei den letzten Generationen der UV-Dioden ist jedoch eine gute Kühlung der Diodenkörper notwendig. Diese kann aber durch einen geeigneten Puls-Pause-Betrieb der UV-Leuchtdioden erreicht werden (Abbildung 13).



Abbildung 15: Aufheizkurve der Diodenkörper bei unterschiedlichen Betriebsweisen des Diodenarrays

## Entwicklung der Photomikroreaktoren

Aufbauend auf den Ergebnissen von Gorges<sup>[13]</sup> wurde ein Photomikroreaktor (Abbildung 14) entworfen, der steckbare Verbindungen besitzt und einfach handhabbar ist. Er ist als kompatible Einheit zu dem entwickelten C-Profil-Anschluss konstruiert worden und besitzt damit standardisierte Anschlüsse aus der HPLC-Technik. Der Photomikroreaktor besteht aus mehren Einzelteilen die ineinander gesteckt werden und somit auf Schrauben verzichtet werden kann. Abbildung 14 zeigt die Oberseite des Photomikroreaktors mit dem Fenster für die Lichtquelle, durch das die mit dem Photokatalysator Titandioxid beschichtete Mikrostruktur zu sehen ist. Auf der rechten Seite ist das C-Profil mit den fluidischen Anschlüssen zu erkennen. Durch das Stecksystem ist eine schnelle (De)montage möglich. Der direkte Einblick in den Aufbau des Photomikroreaktors und ein einfacher Wechsel des Katalysators werden damit ermöglicht.



#### Abbildung 16: Photomikroreaktor zusammengesteckt

Kernstück ist ein Glasverteiler, welcher nach CAD-Zeichnungen bei der Firma Little Things Factory GmbH in Ilmenau gefertigt wurde und in Abbildung 15 zu sehen ist. Der Glasverteiler fügt sich in seinem Aufbau und Abmessungen in die beschriebene Serie der Reaktoren ein. Er wird, wie schon erwähnt, über das C-Profil fluidisch verbunden und verteilt die Reaktionslösung auf dem Katalysatorträger.



Glasverteiler und Katalysatorträger werden von einem robusten Gehäuse aus Aluminium, welches in der universitätseigenen Werkstatt gefertigt wurde, dicht umschlossen. Die Dichtheit wird durch eine flächige Silikondichtung gegeben. Die Einzelteile des Gehäuses, dargestellt in Abbildung 16, bestehen aus a) einer Unterseite, die auch zur Aufnahme des Katalysatorträgers dient, b) einer Oberseite, die auch eine Aufnahme der Lichtquelle (LED-Array) besitzt und c) den seitlichen Verbindern, die auf Ober- und Unterseite gesteckt werden und die dichte Verbindung gewährleisten.



Abbildung 18: Einzelteile des Gehäuses für den Photomikroreaktor von links nach rechts: Unterseite mit Silikondichtung, Oberseite, seitlicher Verbinder

Der Katalysator des Reaktors besteht aus einem Substrat (Katalysatorträger) und einer katalytisch aktiven Substanz, z.B. Titandioxid. Der am ITUC verwendete Katalysatorträger besteht aus chemikalienbeständigem Edelstahl und ist mikrostrukturiert. Die Mikrostruktur besitzt auf dem gesamten Träger eine Tiefe von 500  $\mu$ m. Sie besteht aus 18 Kanälen die parallel verlaufen. Jeder Kanal ist 68 mm lang und 800  $\mu$ m breit und ist von dem Nachbarkanal durch einen 550  $\mu$ m breiten Steg getrennt. Am Anfang und am Ende des Trägers beginnen bzw. enden jeweils drei Kanäle in einem Reservoir von 3 mm Länge und 3,5 mm Breite. Diese Reservoirs bilden die Schnittstelle zum Glasverteiler. Der gesamte Träger ist von einem 630  $\mu$ m breitem Randsteg umgeben. Die Realisierung der Strukturierung erfolgte durch die direkte Weiterverarbeitung der angefertigten CAD-Daten bei der Firma Ätztechnik Herz GmbH & Co in Epfendorf. Der Träger ist als CAD-Modellzeichnung und als Foto (beschichtet mit TiO<sub>2</sub>) in Abbildung 14 dargestellt.



Abbildung 19: Katalysatorträger für Photomikroreaktor als CAD-Modell-Zeichnung links und als Bild rechts

Der Prozess der Strukturierung erfolgte durch eine kombinierte Ätz-Laser-Technik. Die Kanäle werden einseitig eingeätzt und anschließend die Außenkontur mit Präzisionslasern ausgeschnitten. Insgesamt besitzt das Katalysatorblech die Maße eines Objektträgers von 75 mm Länge und 25 mm Breite.

Diese Abmessungen geben die Möglichkeit zur Variation des Katalysatorträgers auf der Basis von Objektträgern oder darauf aufbauenden oder abgeleiteten Trägern. Die Anforderungen an das Material des Trägers richten sich nach der Methode der Aufbringung des Katalysators auf den Träger und nach den späteren Reaktionsbedingungen. Eine wichtige Rolle spielen dabei die Chemikalienbeständigkeit, vor allem die Beständigkeit gegenüber Lösungsmitteln und auch physikalische Eigenschaften wie die elektrische Leitfähigkeit.

Als katalytisch aktive Substanz wurde Titandioxid gewählt, welches mit dem im ITUC vorhandenen SOLECTRO<sup>°</sup>-Verfahren<sup>[13]</sup> auf den Träger aufgebracht wurde. Das Verfahren setzt elektrisch leitfähige Materialien aus Ventilmetallen (*valve metals*), wie Aluminium und Titan oder auch Titancarbid oder Titannitrit voraus. In diesem Fall wurde aus technischen Gründen Titancarbid verwendet. Die Aufbringung des Titancarbids erfolgte mit Hilfe des PVD-Verfahrens (*physical vapour deposition*) bei der Firma Techno-Coat Oberflächentechnik GmbH in Zittau. Die Schicht aus Titancarbid hat eine Dicke von 6,35  $\mu$ m  $\pm$  0,8  $\mu$ m. Die Oxidschicht (Titandioxid) wird aus einem Elektrolyten auf dem Träger anodisch mit dem SOLECTRO<sup>°</sup>-Verfahren abgeschieden.

## Literatur

- [1] T. Frank, in *Microreactors in Organic Synthesis and Catalysis*Ed.: T. Wirth), Wiley-VCH, Weinheim **2008**.
- [2] A. L. Linsebigler, G. Q. Lu, J. T. Yates, *Chemical Reviews* **1995**, *95* 735-758.
- [3] L. Cermenati, M. Mella, A. Albini, *Tetrahedron* **1998**, *54* 2575-2582.
- [4] L. Palmisano, A. Sclafani, in *Heterogeneous Photocatalysis ,Vol. 3*, (Ed.: M. Schiavello), John Wiley and Sons, Chichester **1997**, p. pp. 109-132.
- [5] H. Kisch, W. Lindner, *Chemie in Unserer Zeit* **2001**, *35* 250-257.
- [6] A. F. Hollemann, E. Wiberg, *Lehrbuch der Anorganischen Chemie*, (Ed.: N. Wiberg) de Gruyter, Berlin **1995**.
- [7] A. Albini, M. Fagnoni, *Green Chemistry* **2004**, *6* 1-6.
- [8] A. Albini, V. Dichiarante, *Photochemical & Photobiological Sciences* **2009**, *8* 248-254.
- [9] M. Fagnoni, D. Dondi, D. Ravelli, A. Albini, *Chemical Reviews* **2007**, *107* 2725-2756.
- [10] H. Kisch, Journal fur Praktische Chemie-Chemiker-Zeitung **1994**, 336 635-648.
- [11] G. Kreisel, S. Meyer, D. Tietze, T. Fidler, R. Gorges, A. Kirsch, B. Schafer, S. Rau, *Chemie Ingenieur Technik* **2007**, *79* 153-159.
- [12] *Handbook of Green Chemistry and Technology*, (Eds.: J. Clark, D. Macquarrie) Blackwell Science Ltd., Oxford **2009**.
- [13] R. Gorges, S. Meyer, G. Kreisel, *Journal of Photochemistry and Photobiology A-Chemistry* **2004**, *167* 95-99.
- [14] S. Meyer, R. Gorges, G. Kreisel, *Thin Solid Films* **2004**, *450* 276-281.

# Anhang

# Hydrolyse von Essigsäurechlorid als Demonstrationsbeispiel für exotherme Reaktionen in Mikroreaktoren

## Überblick



| Reaktionstyp       | Hydrolyse                                                                                    |
|--------------------|----------------------------------------------------------------------------------------------|
| Stoffklassen       | Säurehalogenid, Säure, Keton                                                                 |
| Arbeitsmethoden    | Mischen im Mikromischer<br>Kühlen mit Luft, Wasser, Eis, Peltierelement<br>Temperaturmessung |
| Schwierigkeitsgrad | mittel                                                                                       |

## Synthesevorschrift



## Klassifizierung

## Reaktionstypen und Stoffklassen

Wärmeaustausch und Kühlung in der Mikroreaktionstechnik

Hydrolyse, Spaltung von Säurehalogeniden

Säurehalogenide, organische Säuren, Ketone, anorganische Säuren

## Arbeitsmethoden

Mischen und Reagieren in Mikromischer aus Glas, Wärmeübertragung, verschiedene Methoden der Kühlung (Temperierung)

## Versuchsvorschrift (Ansatzgröße 0,28 mol)

## Geräte

Mikromischer (LTF-MX), Verweilzeitstrecke (LTF-V), C-Profil, Anschlussstücke, PTFE-Schlauch 1/8", Spritzenpumpe (Cetoni Nemesys), Spritzen 10mL (ILS Series H-TLL PTFE Luer-Lock), Vorratsgefäß (Schlenk) mit Adapter, Tropftrichter mit Druckausgleich, Becherglas, Zweihalskolben, Thermometer, Adapter für Kanüle, Septum (SubaSeal)

## Chemikalien

|               | molare Masse | Dichte                 | Volumen | Masse | Stoffmenge |
|---------------|--------------|------------------------|---------|-------|------------|
| Acetylchlorid | 78,5 g/mol   | 1,10 g/cm <sup>3</sup> | 20 mL   | 22 g  | 0,28 mol   |
| THF           | 72,11 g/mol  | 0,89 g/cm <sup>3</sup> | 10 mL   | 8,9 g | 0,12 mol   |
| Wasser        | 18,02 g/mol  | 1,0g /cm <sup>3</sup>  | 30 mL   | 30 g  | 1,67 mol   |

## Durchführung der Reaktion

Die Vorratsgefäße werden über den Adapter mit PTFE Schläuchen mit den strömungstechnischen Eingängen der Spritzenpumpe verbunden. Die Ausgänge der Spritzenpumpe werden mit PTFE-Schläuchen mit den Eingängen des Mikromischers Typ LTF-MX über die aufgeschobene C-Profilschiene verbunden. Der Ausgang des Mikromischers wird auf gleiche Art und Weise mit dem Eingang der Verweilzeitstrecke Typ LTF-V verbunden. Der Ausgang der Verweilzeitstrecke wird mit einem PTFE-Schlauch mit dem Zweihalskolben über das Septum verbunden. Die Lösung soll aus dem Schlauch auf den Fühler des Thermometers tropfen bzw. fließen. Das Thermometer sollte dabei nicht in der aufgefangenen Lösung stecken.

Der Mikromischer Typ LTF-MX und nachgeschaltete Verweilzeitstrecke Typ LTF-V werden mit Stativmaterial in ein Becherglas mit Eis gehangen.

Auf die Vorratsgefäße werden die Tropftrichter gesteckt. Zur Vorbereitung der Anlage werden 5 mL Wasser in den einen und 5 mL THF in den anderen Tropftrichter gefüllt. Die Lösungsmittel werden in die Vorratsgefäße überführt und die Ventile an den Vorratsgefäßen werden geöffnet. Der erste Schritt dient dem Spülen der Anlage mit den verwendeten Lösungsmitteln und dem Verdrängung der Luft aus der Anlage. Der Spülvorgang wird so oft wiederholt, bis die Anlage Luftblasenfrei ist.

Eine Mischung aus 10 mL THF und 20 mL Acetylchlorid wird hergestellt. Jeweils 10 mL der Mischung und 10 mL Wasser werden in die entsprechenden Tropftrichter gefüllt. Die Tropftrichter werden auf die zugehörigen Vorratsgefäße gesteckt und diese mit einem Teil der vorbereiteten Lösung gefüllt. Mit der Spritzenpumpe werden die Lösungen in die Spritzen gesaugt. Nach Befüllung der Spritzen

wird an der Spritzenpumpe der Volumenstrom zum befördern der Lösungen durch die Anlage eingestellt.

Die Lösungen (Reaktanden) werden mit dem eingestellten Volumenstrom durch die Anlage befördert und am Thermometer die Temperatur abgelesen. Die Kühlung des Mikromischer und der Verweilzeitstrecke im Becherglas kann variiert werden. Weiter Möglichkeiten sind die Kühlung mit Wasser unter Rühren oder die Kühlung mit Luft. (Mit einer Erweiterung der Anlage ist auch eine Kühlung mit Peltierelementen möglich.)

Die gemessenen Temperaturen werden in Abhängigkeit von Volumenstrom und Kühlung ausgewertet.

#### Aufarbeitung

Die aufgefangene Lösung wird neutralisiert.

#### Anmerkungen

Die Verdünnung des Acetylchlorid mit THF ist notwendig, um die Intensität der Reaktion zu minimieren. Die Mischung sollte frisch hergestellt werden, da THF durch starke Säuren gespalten und somit Reaktionslösung verbraucht wird.

## Abfallbehandlung/Entsorgung

Die neutralisierte Lösung wird als halogenhaltiges Lösungsmittel entsorgt.

#### Zeitbedarf

2 Stunden (bei routiniertem Umgang mit Mikroreaktionstechnik)

#### Unterbrechungsmöglichkeit

Jederzeit, durch Abschalten der Spritzenpumpen und Schließen des Ventils an den Vorratsgefäßen.

#### Schwierigkeitsgrad

mittel (bei routiniertem Umgang mit der Mikroreaktionstechnik)

#### Analytik

Temperaturmessung

## Operationsschema

## Stoffe

# benötigte Stoffe

|               | Gefahrenzeichen | Menge | Risiko        | Sicherheit         |
|---------------|-----------------|-------|---------------|--------------------|
| Edukte        |                 |       |               |                    |
| Acetylchlorid | 👏 F             | 20 mL | R 11-14-34    | S (1/2)-9-16-26-45 |
|               | C               |       |               |                    |
| Wasser        |                 | 30 mL |               |                    |
| Lösungsmittel |                 |       |               |                    |
| THF           | 👏 F             | 10 mL | R 11-19-36/37 | S 2-16-29-33       |
|               | Xi              |       |               |                    |

## anfallende Stoffe

|            | Gefahrenzeichen  | Menge  | Risiko     | Sicherheit     |
|------------|------------------|--------|------------|----------------|
| Produkte   |                  |        |            |                |
| Essigsäure | C                | 16,8 g | R 10-34/35 | S 1/2-23-26-45 |
| Salzsäure  | <mark>⊈</mark> C | 10,2 g | R 34-37    | S 1/2-26-45    |

| Abfall                          | Entsorgung                                             |
|---------------------------------|--------------------------------------------------------|
| organisch-wässrige Phase, sauer | neutralisieren, organische Lösungsmittel halogenhaltig |

## Geräte

| Bild    | Beschreibung                                   |
|---------|------------------------------------------------|
|         | Mikromischer LTF-MX                            |
|         | Verweilzeitstrecke LTF-V                       |
|         | C-Profil                                       |
|         | Anschlussstücke (Upchurch Best.Nr. P300, P301) |
|         | PEEK-Schlauch 1/8" (Upchurch Best.Nr. 1508)    |
| NEMESYS | Spritzenpumpe (Cetoni Nemesys)                 |
|         | Spritzen (ILS H-TLL PTFE-Luer-Lock)            |
|         | Anschlussstück (Upchurch Best.Nr. P830)        |
|         | Vorratsgefäß (Schlenkgefäß) mit Adapter 100 mL |

| Adapter (Upchurch)<br>für Anschluss des PEEK-Schlauchs an Glasgeräte<br>(Glasbläserarbeiten notwendig) |
|--------------------------------------------------------------------------------------------------------|
| Tropftrichter mit Druckausgleich 100 mL                                                                |
| Dreihalskolben 250 mL                                                                                  |
| Thermometer mit Schliff                                                                                |
| Septum (SubaSeal)                                                                                      |
| Becherglas 800 mL                                                                                      |

## Bewertung

#### Einfache Bewertungskennzahlen

Die Bewertung ist nicht zu hoch zu beurteilen, weil diese Reaktion als Beispielreaktion für eine exotherme Reaktion in einem Mikromischer gilt. Ziel ist die Kühlung der aufgebauten Anlage und nicht die Synthese.

Die berechneten Werte in der Tabelle beziehen sich auf Essigsäure.

| Atomökonomie              | 32,3%                   |
|---------------------------|-------------------------|
| Ausbeute                  | 100%                    |
| Masse Zielprodukt         | 16,8 g                  |
| Masse eingesetzter Stoffe | 52 g                    |
| Stoffeffizienz            | 323 mg/g                |
| E-Faktor                  | 1,14 g Abfall/g Produkt |

#### Stoffintensität

Bewertungstext

#### Analytik

Temperaturmessung

## Betriebsanweisung

Versuchsbezogene Betriebsanweisung

Benutzerkommentare

## Landolt-Zeitreaktion

## Überblick

- a)  $IO_3^- + 3 SO_3^{2-} \rightarrow I^- + 3 SO_4^{2-}$
- b)  $IO_3^{-} + 5I^{-} + 6H^{+} \rightarrow 3I_2 + 3H_2O$
- c)  $3 I_2 + 2 SO_3^{2-} + H_2O \rightarrow 6 I^- + 6 H^+ + 3 SO_4^{2-}$

| Reaktionstyp       | Stufenreaktion, Zeitreaktion, Farbreaktion |
|--------------------|--------------------------------------------|
| Stoffklassen       | anorganische Säuren und Salze              |
| Arbeitsmethoden    | Mischen und Reagieren in Mikromischer      |
| Schwierigkeitsgrad | mittel                                     |

## Synthesevorschrift

- a)  $IO_3^- + 3 SO_3^{2-} \rightarrow I^- + 3 SO_4^{2-}$
- b)  $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$
- c)  $3 I_2 + 2 SO_3^{2-} + H_2O \rightarrow 6 I^- + 6 H^+ + 3 SO_4^{2-}$

Am schnellsten verläuft Reaktion c) und verbraucht damit alles gebildete Iod solang Sulfit-Anionen in der Lösung vorhanden sind. Erst wenn alle Sulfit-Anionen verbraucht sind und Reaktion a) und c) nicht mehr ablaufen, wird das gebildete Iod aus Reaktion b) nicht mehr abgebaut und bildet mit Stärke einen blau-violetten Iod-Stärke-Komplex.

## Klassifizierung

Reaktionstypen und Stoffklassen

Farbreaktion, Zeitreaktion, Stufenreaktion

anorganische Säuren und Salze

#### Arbeitsmethoden

Mischen und Reagieren in Mikromischer aus Glas, Bestimmung der Mischgüte

## Versuchsvorschrift (Ansatzgröße 0,2 mmol)

#### Geräte

Mikromischer (LTF-MX), Verweilzeitstrecke (LTF-V), C-Profil, Anschlussstücke, PTFE-Schlauch 1/8", Spritzenpumpe (Cetoni Nemesys), Spritzen 10mL (ILS Series H-TLL PTFE Luer-Lock), Vorratsgefäß (Schlenk) mit Adapter, Tropftrichter mit Druckausgleich, Becherglas, Zweihalskolben, Adapter für Kanüle, Kanüle, Septum (SubaSeal)

#### Chemikalien

|               | molare Masse | Dichte                 | Volumen | Masse   | Stoffmenge               |
|---------------|--------------|------------------------|---------|---------|--------------------------|
| Natriumsulfit | 126,04 g/mol | 2,63 g/cm <sup>3</sup> | -       | 0,062 g | 4,9x10 <sup>-4</sup> mol |
| Kaliumiodat   | 214 g/mol    | 3,9 g/cm <sup>3</sup>  | -       | 0,043 g | 2,0x10 <sup>-4</sup> mol |
| Stärke        | Biopolymer   | -                      | -       | 0,04 g  | -                        |
| Schwefelsäure | 98,07 g/mol  | 1,84 g/cm <sup>3</sup> | -       | -       | -                        |

## Durchführung der Reaktion

Die Vorratsgefäße werden über den Adapter mit PTFE Schläuchen mit den strömungstechnischen Eingängen der Spritzenpumpe verbunden. Die Ausgänge der Spritzenpumpe werden mit PTFE-Schläuchen mit den Eingängen des Mikromischers Typ LTF-MX oder LTF-MS über die aufgeschobene C-Profilschiene verbunden. Der Ausgang des Mikromischers wird auf gleiche Art und Weise mit dem Eingang der Verweilzeitstrecke Typ LTF-V verbunden. Der Ausgang der Verweilzeitstrecke wird mit einem PTFE-Schlauch mit dem Zweihalskolben über das Septum verbunden. Auf die Vorratsgefäße werden die Tropftrichter gesteckt. Zur Vorbereitung der Anlage werden 5 mL Wasser in den einen und 5 mL THF in den anderen Tropftrichter gefüllt. Die Lösungsmittel werden in die Vorratsgefäße überführt und die Ventile an den Vorratsgefäßen werden geöffnet. Der erste Schritt dient dem Spülen der Anlage mit Wasser der Verdrängung der Luft aus der Anlage. Der Spülvorgang wird so oft wiederholt, bis die Anlage Luftblasenfrei ist. Die Vorratsgefäße werden bis zum Ventil geleert. In den Schläuchen soll Flüssigkeit bleiben.

Für die Herstellung der Ausgangslösungen werden zuerst 0,04 g Stärke in 10 mL Wasser in der Hitze gelöst. Zu der Stärkelösung gibt man 0,043 g Kaliumiodat. Für die zweite Ausgangslösung werden 0,062 g Natriumsulfit in Wasser gelöst und mit Schwefelsäure auf einen pH-Wert von 1 eingestellt.

Die Lösungen werden in die entsprechenden Tropftrichter gefüllt. Die Tropftrichter werden auf die zugehörigen Vorratsgefäße gesteckt und diese mit einem Teil der vorbereiteten Lösung gefüllt. Mit der Spritzenpumpe werden die Lösungen in die Spritzen gesaugt. Nach blasenfreien Befüllung der Spritzen wird an der Spritzenpumpe der Volumenstrom zum befördern der Lösungen durch die Anlage eingestellt.

Die Lösungen (Reaktanden) werden mit dem eingestellten Volumenstrom durch die Anlage befördert. In Abhängigkeit von Volumenstrom unterscheiden sich die Mischgüte und damit die Farbintensität des entstehenden Iod/Stärke-Komplexes.

Dieser Versuch kann auch ohne Spritzenpumpen durchgeführt werden. Die Vorratsgefäße werden mit PEEK-Schläuchen direkt mit den Mikromischern über die C-Profil-Schiene verbunden. Der Volumenstrom resultiert aus dem hydrostatischen Druck und wird über die Höhendifferenz zwischen Flüssigkeitsspiegel in den Vorratsgefäßen und Höhe des Kanülenausgangs im Dreihalskolben eingestellt. Die Regulierung erfolgt über die Variation der Höhe des Dreihalskolbens.

#### Aufarbeitung

keine Aufarbeitung, da keine Synthese

#### Anmerkungen

Zusatz von Sulfit in 2,5facher Menge im Vergleich zu Iodat

## Abfallbehandlung/Entsorgung

Durch Eintragen in eine Natriumthiosulfatlösung, ggf. unter Ansäuern, in gefahrlose Reduktionsprodukte überführen. In Sammelbehälter für Salzlösungen geben. In diesem Gefäß ist ein pH-Wert von 6-8 einzustellen.

#### Zeitbedarf

2 Stunden (bei routiniertem Umgang mit Mikroreaktionstechnik)

#### Unterbrechungsmöglichkeit

Jederzeit, durch Abschalten der Spritzenpumpen und Schließen des Ventils an den Vorratsgefäßen.

#### Schwierigkeitsgrad

mittel (bei routiniertem Umgang mit der Mikroreaktionstechnik)

## Analytik

visuelle Einschätzung des Mischergebnisses durch Intensität der Färbung

## Operationsschema

## Stoffe

## benötigte Stoffe

|               | Gefahrenzeichen | Menge    | Risiko | Sicherheit     |
|---------------|-----------------|----------|--------|----------------|
| Edukte        |                 |          |        |                |
| Kaliumiodat   | -               | 0,043 g  | -      | -              |
| Natriumsulfit | -               | 0,062 g  | -      | -              |
| Schwefelsäure | <b>≟</b> ≧C     | ca. 1 mL | R 35   | S 1/2-26-30-45 |
| Indikator     |                 |          |        |                |
| Stärke        | -               | 0,04 g   | -      | -              |
|               |                 |          |        |                |
| Lösungsmittel |                 |          |        |                |
| Wasser        | -               | -        | -      | -              |
|               |                 |          |        |                |

## anfallende Stoffe

|          | Gefahrenzeichen | Menge | Risiko     | Sicherheit   |
|----------|-----------------|-------|------------|--------------|
| Produkte |                 |       |            |              |
| lod      | Xn              |       | R 20/21-50 | S 2-23-25-61 |
|          | ₩2N             |       |            |              |

| Abfall | Entsorgung                                                                                                                                                                                                               |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lod    | Durch Eintragen in eine Natriumthiosulfatlösung, ggf. unter Ansäuern, in gefahrlose<br>Reduktionsprodukte überführen. In Sammelbehälter für Salzlösungen geben. In<br>diesem Gefäß ist ein pH-Wert von 6-8 einzustellen. |

## Geräte

| Bild    | Beschreibung                                   |
|---------|------------------------------------------------|
|         | Mikromischer LTF-MX                            |
|         | Mikromischer LTF-MS                            |
|         | Verweilzeitstrecke LTF-V                       |
|         | C-Profil                                       |
|         | Anschlussstücke (Upchurch Best.Nr. P300, P301) |
|         | PEEK-Schlauch 1/8" (Upchurch Best.Nr. 1508)    |
| NEMESYS | Spritzenpumpe (Cetoni Nemesys)                 |
|         | Spritzen (ILS H-TLL PTFE-Luer-Lock)            |

|            | Anschlussstück (Upchurch Best.Nr. P830<br>Fitting Luer Tight Female) für Spritze |
|------------|----------------------------------------------------------------------------------|
|            | Vorratsgefäß (Schlenkgefäß) mit Adapter 100 mL                                   |
|            | Adapter (Upchurch)                                                               |
| - <b>1</b> | (Glasbläserarbeiten notwendig)                                                   |
|            | Tropftrichter mit Druckausgleich 100 mL                                          |
|            | Dreihalskolben 250 mL                                                            |
|            | Septum (SubaSeal)                                                                |
|            | Anschluss (Upchurch Best.Nr. P675 ) für Kanüle                                   |
|            | Kanüle                                                                           |

## Bewertung

## Einfache Bewertungskennzahlen

entfällt, da keine Synthese

## Analytik

visuelle Einschätzung des Mischergebnisses durch Intensität der Färbung

## Betriebsanweisung

Versuchsbezogene Betriebsanweisung

Benutzerkommentare

## Nitroaldolreaktion - Henry-Reaktion

## Überblick



| Reaktionstyp       | Reaktion von Carbonylverbindungen                              |
|--------------------|----------------------------------------------------------------|
|                    | Aldolreaktion                                                  |
|                    | Reaktion aromatischer Aldehyde mit Ketonen                     |
| Stoffklassen       | Aromat, aromatische Aldehyde, CH-acide<br>Verbindungen, Basen, |
| Arbeitsmethoden    | Mischen und Reagieren im Mikroreaktor,<br>Extraktion           |
| Schwierigkeitsgrad | mittel                                                         |

Synthesevorschrift



## Klassifizierung

#### Reaktionstypen und Stoffklassen

Reaktion von Carbonylverbindungen

Aldolreaktion

Reaktion aromatischer Aldehyde mit Ketonen Arbeitsmethoden

Mischen und Reagieren im Mikroreaktor, Extraktion

## Versuchsvorschrift (Ansatzgröße 0,01 mol)

#### Geräte

Mikromischer (LTF-MX), Verweilzeitstrecke (LTF-V), C-Profil, Anschlussstücke, PTFE-Schlauch 1/8", Spritzenpumpe (Cetoni Nemesys), Spritzen 10mL (ILS Series H-TLL PTFE Luer-Lock), Vorratsgefäß (Schlenkrohr) mit Adapter, Tropftrichter mit Druckausgleich, Becherglas, Zweihalskolben, Adapter mit Kanüle, Septum (SubaSeal)

## Chemikalien

| Name                     | molare Masse | Dichte                    | Volumen | Masse    | Stoffmenge |
|--------------------------|--------------|---------------------------|---------|----------|------------|
| 4-Methyl-<br>Benzaldehyd | 120,15 g/mol | 1,0194 g/cm <sup>3</sup>  | 1,18 mL | 1,2015 g | 0,01 mol   |
| Nitromethan              | 61,04 g/mol  | 1,1385 g/cm <sup>3</sup>  | 0,54 mL | 0,6104 g | 0,01 mol   |
| Kaliumhydroxid           | 56,11 g/mol  |                           |         | 0,5611 g | 0,01 mol   |
| HCI 20%ig                | 36,46 g/mol  | ca. 1,1 g/cm <sup>3</sup> | 3,32 mL | 3,65 g   | 0,02 mol   |

#### Durchführung der Reaktion

Die Vorratsgefäße werden über den Adapter mit PTFE Schläuchen mit den strömungstechnischen Eingängen der Spritzenpumpe verbunden. Die Ausgänge der Spritzenpumpe werden mit PTFE-Schläuchen mit den Eingängen des Mikromischers Typ LTF-MX über die aufgeschobene C-Profilschiene verbunden. Der Ausgang des Mikromischers wird auf gleiche Art und Weise mit dem Eingang der Verweilzeitstrecke Typ LTF-V verbunden. Der Ausgang der Verweilzeitstrecke wird mit einem PTFE-Schlauch mit dem Zweihalskolben über das Septum verbunden. Der Mikromischer Typ LTF-MX und nachgeschaltete Verweilzeitstrecke Typ LTF-V werden mit Stativmaterial in ein Becherglas mit Wasser evtl. auch Eis zur Kühlung gehangen.

Zur Vorbereitung der Anlage werden je 6 mL Methanol in die Tropftrichter gefüllt. Die Lösungsmittel werden in die Vorratsgefäße überführt und die Ventile an den Vorratsgefäßen werden geöffnet. Der erste Schritt dient dem Spülen der Anlage mit den verwendeten Lösungsmitteln und dem

Verdrängung der Luft aus der Anlage. Der Spülvorgang wird min. dreimal wiederholt, bis die Anlage Luftblasenfrei ist.

Eine Mischung aus 0,01 mol 4-Methylbenzaldehyd und 0,01 mol Nitromethan in 10 mL Methanol wird hergestellt. In 10 mL Wasser werden 0,01 mol Kaliumhydroxid gelöst. Die Lösungen werden in die entsprechenden Tropftrichter gefüllt. Die Tropftrichter werden auf die zugehörigen Vorratsgefäße gesteckt und diese mit einem Teil der vorbereiteten Lösung gefüllt. Mit der Spritzenpumpe werden die Lösungen in die Spritzen gesaugt. Nach Befüllung der Spritzen wird an der Spritzenpumpe der Volumenstrom zum Befördern der Lösungen durch die Anlage eingestellt.

Die Lösungen (Reaktanzen) werden mit dem eingestellten Volumenstrom durch die Anlage befördert und nach Ablauf der Verweilzeit wird das Reaktionsgemisch in der doppelt molaren Menge 20% iger Salzsäure im Zweihalskolben aufgefangen.

## Aufarbeitung

Der entstandene Feststoff wird abfiltriert und mit Wasser gewaschen.

#### Anmerkungen

Bestimmung der Verweilzeit notwendig.

## Abfallbehandlung/Entsorgung

| Abfall                        | Entsorgung                                                                                         |
|-------------------------------|----------------------------------------------------------------------------------------------------|
| neutralisierte wässrige Phase | In Sammelbehälter für Salzlösungen geben. In diesem<br>Gefäß ist ein pH-Wert von 6-8 einzustellen. |
| Filtrat                       | Sammelbehälter für halogenfreie organische Lösemittel                                              |

#### Zeitbedarf

3 Stunden (bei routiniertem Umgang mit Mikroreaktionstechnik)

#### Unterbrechungsmöglichkeit

Jederzeit, durch Abschalten der Spritzenpumpen und Schließen des Ventils an den Vorratsgefäßen.

#### Schwierigkeitsgrad

mittel (routinierter Umgang mit der Mikroreaktionstechnik erforderlich)

## Analytik

## Operationsschema



## Stoffe

## benötigte Stoffe

|                          | Gefahrenzeichen         | Menge    | Risiko                        | Sicherheit             |
|--------------------------|-------------------------|----------|-------------------------------|------------------------|
| Edukte                   |                         |          |                               |                        |
| 4-Methyl-<br>Benzaldehyd | Xn                      | 1,2015 g | R 22-36/38                    | S 26-27                |
| Nitromethan              | Xn                      | 0,6104 g | R 5-1022                      | S 2-41                 |
| Salzsäure 37%            | <mark>⊈</mark> C        | 2 g      | R 34-37                       | S (1/2)-26-45          |
| Katalysator              |                         |          |                               |                        |
| Kaliumhydroxid           | C                       | 0,5611 g | R 22-35                       | S (1/2)-26-36/37/39-45 |
| Lösungsmittel            |                         |          | -                             | -                      |
| Methanol                 | <mark>е</mark> ́F<br>⊛т |          | R 11-23/24/25-<br>39/23/24/25 | S (1/2)-7-16-36/37-45  |

## anfallende Stoffe

|                                    | Gefahrenzeichen | Menge  | Risiko     | Sicherheit |
|------------------------------------|-----------------|--------|------------|------------|
| Produkte                           |                 |        |            |            |
| 1-Methyl-4(2-<br>nitrovinyl)benzol | Xi              | 1,63 g | R 36/37/38 | S 26-36    |

| Abfall                        | Entsorgung                                                                                         |
|-------------------------------|----------------------------------------------------------------------------------------------------|
| neutralisierte wässrige Phase | In Sammelbehälter für Salzlösungen geben. In diesem<br>Gefäß ist ein pH-Wert von 6-8 einzustellen. |
| Filtrat                       | Sammelbehälter für halogenfreie organische Lösemittel                                              |

## Geräte

| Bild    | Beschreibung                                   |
|---------|------------------------------------------------|
|         | Mikromischer LTF-MX                            |
|         | Mikromischer LTF-MS                            |
|         | Verweilzeitstrecke LTF-V                       |
|         | C-Profil                                       |
|         | Anschlussstücke (Upchurch Best.Nr. P300, P301) |
|         | Teflon-Schlauch 1/8" (Upchurch Best.Nr. 1508)  |
| NEMESYS | Spritzenpumpe (Cetoni Nemesys)                 |
|         | Spritzen (ILS H-TLL PTFE-Luer-Lock)            |
|         | Anschlussstück (Upchurch Best.Nr. P830)        |

|     | Tropftrichter mit Druckausgleich 100 mL                                                                |
|-----|--------------------------------------------------------------------------------------------------------|
|     | Vorratsgefäß (Schlenkgefäß) mit Adapter 100 mL                                                         |
|     | Adapter (Upchurch)<br>für Anschluss des PEEK-Schlauchs an Glasgeräte<br>(Glasbläserarbeiten notwendig) |
| B   | Zweihalskolben 250 mL                                                                                  |
|     | Septum (SubaSeal)                                                                                      |
|     | Anschluss (Upchurch Best. Nr. P675 ) für Kanüle                                                        |
| R R | Kanüle                                                                                                 |

# Bewertung

## Einfache Bewertungskennzahlen

| Atomökonomie              | 90,1 % |
|---------------------------|--------|
| Ausbeute                  | 80 %   |
| Masse Zielprodukt         | 1,31 g |
| Masse eingesetzter Stoffe | 3,1 g  |

| Stoffeffizienz | 0,42 |
|----------------|------|
| E-Faktor       | 1,37 |

## Stoffintensität

Bewertungstext

## Analytik

## GC

Säule: HP-5; L = 30 m; d = 0,32 mm; Film = 0,25  $\mu$ m

Aufgabe: Split 1/100, 1 μL

Trägergas: H<sub>2</sub>, 4 mL/min

Ofen: 80°C (1 min), 20°C/min -> 240°C (30 min)

Detektor: FID, 270°C

Integration: Prozentgehalt aus den Peakflächenverhältnissen bestimmt

| Verbindung   | Retentionszeit |
|--------------|----------------|
| Tolualdehyd  | 2,6 min        |
| Produkt      | 5,5 min        |
| Nebenprodukt | 5,6 min        |

## <sup>1</sup>H-NMR

| δ (ppm) | Multiplizität | Anzahl H | Zuordnung    |
|---------|---------------|----------|--------------|
| 2,4     | S             | 3 H      | Methylgruppe |
| 7,3     | d             | 2 H      | Phenyl       |
| 7,5     | d             | 2 H      | Phenyl       |
| 7,8     | d             | 1 H      | Vinyl        |
| 8,0     | d             | 1 H      | Vinyl        |

Betriebsanweisung

Versuchsbezogene Betriebsanweisung

## Benutzerkommentare

## Reduktion von p-Nitrotoluol zu p-Aminotoluol

## Überblick



| Reaktionstyp       | Photoreduktion, Katalyse, Reduktion der<br>Nitrogruppe, Photochemie, Photokatalyse an<br>Titandioxid |
|--------------------|------------------------------------------------------------------------------------------------------|
| Stoffklassen       | Aromat, Nitroaromat, Aminoaromat                                                                     |
| Arbeitsmethoden    | Photomikroreaktor, anaerobes Arbeiten                                                                |
| Schwierigkeitsgrad | schwer                                                                                               |

## Synthesevorschrift



## Klassifizierung

#### Reaktionstypen und Stoffklassen

Photochemie

Photokatalyse an Titandioxid

Photoreduktion eines Nitroaromaten

#### Arbeitsmethoden

anaerobes Arbeiten, Schlenktechnik, kontinuierliches Verfahren, Spritzenpumpe, Mikroreaktionstechnik,

## Versuchsvorschrift (Ansatzgröße 1 µmol)

#### Geräte

Photomikroreaktor für heterogene Katalyse, mikrostrukturiertes Katalysatorblech (mit Titandioxid beschichtet), C-Profil, Anschlussstücke, PTFE-Schlauch 1/8", Spritzenpumpe (Cetoni Nemesys), Spritzen 10 mL (ILS Series H-TLL PTFE Luer-Lock), Vorratsgefäß (Schlenk) mit Adapter, Schlenkkolben, Gaseinleitungsrohr mit Hahnschliff, Inertgasversorgung (Vakuumpumpe, Kühlfalle, Argon, Hahnleiste, Silikonschläuche), Zweihalskolben, Plastik-Spritze 10mL, UV-LED-Array, UV-Schutzbrille

#### Chemikalien

|               | molare Masse | Dichte                 | Volumen                  | Masse    | Stoffmenge             |
|---------------|--------------|------------------------|--------------------------|----------|------------------------|
| 4-Nitrotoluol | 137,14 g/mol | 1,28 g/cm <sup>3</sup> | -                        | 0,137 mg | 10 <sup>-6</sup> mol   |
| Ethanol       | 46,07 g/mol  | 0,79 g/cm <sup>3</sup> | 0,175 μL                 | 0,138 mg | 3x10 <sup>-6</sup> mol |
| Titandioxid   | 79,88 g/mol  | 4,24 g/cm <sup>3</sup> | immobilisiert auf Träger |          | ger                    |

#### Durchführung der Reaktion

Die beschriebene Synthese wird unter anaeroben Bedingungen durchgeführt.

In den 500 mL Schlenkkolben werden 200 mL Ethanol gefüllt. Das Gaseinleitungsrohr wird eingesetzt. Das Hahnventil des Schlenkkolbens und der Hahnschliff des Gaseinleitungsrohres werden über die Silikonschläuche mit der Inertgasapparatur verbunden. Das Ethanol wird mit Inertgas gespült.

Zusätzlich ist ein Vorratsgefäß an die Inertgasapparatur angeschlossen. Es wird außerdem über den Adapter und den PTFE Schläuchen mit den strömungstechnischen Eingang einer Spritze der Spritzenpumpe verbunden. Der Ausgang der Spritzenpumpe und der Eingang des Photomikroreaktors werden über PTFE-Schlauch der aufgeschobenen C-Profilschiene verbunden. Der Ausgang des Photomikroreaktors wird mit PTFE-Schlauch mit dem Zweihalskolben über das Septum verbunden. Das Vorratsgefäß und die Schläuche werden bis zur Spritzenpumpe dreimal sekuriert. Zur Vorbereitung der Anlage wird 10 mL sauerstofffreier Ethanol mit der Plastikspritze im Inertgasstrom in das Vorratsgefäß überführt. Der erste Schritt dient dem Spülen der Anlage mit dem sauerstofffreien Ethanol und der Verdrängung des Inertgases aus der Anlage. Der Spülvorgang wird so oft wiederholt, bis die Anlage gasfrei ist.

Für die Reaktion wird eine sauerstofffreie ethanolische Lösung von 4-Nitrotoluol mit einer Konzentration von  $c = 10^{-4}$  mol/L verwendet. Diese wird über einen Verdünnungsschritt aus einer Stammlösung mit der Konzentration von  $c = 10^{-2}$  mol/L hergestellt. Zur Herstellung der Stammlösung werden 0,0686 g 4-Nitrotoluol in einem Schlenkrohr eingewogen und nach dem Sekurieren mit 50 mL sauerstofffreiem Ethanol aufgefüllt. Aus dieser Stammlösung werden im Argonstrom 1 ml abgenommen und in einem zweiten sekurierten Schlenkrohr mit 100 mL sauerstofffreiem Ethanol verdünnt. Diese Ausgangslösung wird für das weitere Experiment verwendet.

In das Vorratsgefäß der Versuchsanlage werden im Inertgasstrom 16 mL der Reaktionslösung gegeben. Die Anlage wird mit insgesamt 6 mL der Reaktionslösung dreimal gespült. Nach neuerlichem Füllen der Spritze mit Ausgangslösung wird das Experiment mit Bestrahlung durch UV-A-LEDs begonnen. Es ist auf den Schutz der Augen mit einer **UV-Schutzbrille** zu achten! Die Reaktionslösung wir mit dem eingestellten Volumenstrom durch die Anlage befördert. Unter Beachtung der Verweilzeit können Proben mit den variierten Parametern, Lichtintensität und Verweilzeit, genommen und analysiert werden.

Nach Abschluss des Experiments wird die Anlage dreimal mit insgesamt 6 mL Ethanol gespült.

Für Ansätze mit Volumen größer dem Spritzenvolumen werden zwei Spritzen, mit periodischem Wechsel von Aufziehen und Abgeben, betrieben. Das dabei geförderte Volumen darf das im Vorratsgefäß nicht überschreiten.

Das Experiment kann auch ohne Spritzenpumpe mit Hilfe des hydrodynamischen Drucks durchgeführt werden. Dazu wird das Vorratsgefäß mit dem Photomikroreaktor direkt verbunden und der Volumenstrom über den Hahn am Vorratsgefäß eingestellt.

## Aufarbeitung

Bei größeren Ansätzen kann das erhaltene Reaktionsgemisch aufgearbeitet werden. Dazu wird es am Rotationsverdampfer bis zur Trockne eingeengt. Das Produkt wird aus dem Rückstand am Vakuum destilliert.

#### Anmerkungen

Bestimmung der Verweilzeit notwendig.

Fertigkeiten im anaeroben Arbeiten/Schlenktechnik sind erforderlich.

#### Abfallbehandlung/Entsorgung

Lösungsmittel halogenfrei

giftige und entzündliche Verbindungen

#### Zeitbedarf

3 Stunden (bei routiniertem Umgang mit Mikroreaktionstechnik)

Unterbrechungsmöglichkeit

Jederzeit, durch Abschalten der Spritzenpumpen und Schließen des Ventils an den Vorratsgefäßen.

## Schwierigkeitsgrad

schwer (routinierter Umgang mit der Mikroreaktionstechnik und Erfahrung im anaeroben Arbeiten notwendig)

## Analytik

#### Reaktionskontrolle mit UV-VIS

a) 4-Aminotoluol

Absorptionsmaximum  $\lambda(max) = 235 \text{ nm}$  in Ethanol



Abbildung 20: UV-VIS Spektrum ethanolische 4-Aminotoluol-Lsg.  $c = 10^{-4}$  mol/L

#### b) 4-Nitrotoluol

Absorptionsmaximum  $\lambda(max) = 275 \text{ nm}$  in Ethanol



Abbildung 21: UV-VIS-Spektrum ethanolische 4-Nitrotoluol-Lsg.  $C = 10^{-4}$  mol/L





Abbildung 22: UV-VIS-Spektrum Ausgangslösung und Reaktionslösung c =  $10^{-4}$  mol/L in Ethanol

# quantitative Analyse mit HPLC

# a) Säule

| Füllmaterial           | Lichrospher 100 RP-18 |
|------------------------|-----------------------|
| Korngröße              | 5 μm                  |
| Säulenlänge            | 250 mm                |
| Säuleninnendurchmesser | 4,6 mm                |

## b) mobile Phase

| Eluent A    | Methanol                                                                                                          |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| Eluent B:   | Phosphatpuffer nach Sörensen; pH 5,9<br>0,132 g Diamoniumhydrogenphosphat/L<br>2,042 g Kaliumdihydrogenphosphat/L |
| Temperatur: | 40°C                                                                                                              |
| Fluss       | 0,8 mL/min                                                                                                        |

## c) Gradient

| MeOH/Puffer-<br>Verhältnis | Zeit            |
|----------------------------|-----------------|
| 15/85                      | 0 - 2 min       |
| 100/0                      | 2 – 8,5 min     |
| 100/0                      | 8,5 – 10,5 min  |
| 15/85                      | 10,5 – 15,3 min |

## d) Detektor: UV VIS Detektor

| Stoff         | Wellenlänge | Zeit     |
|---------------|-------------|----------|
| 4-Aminotoluol | 235 nm      | 14,0 min |
| 4-Nitrotoluol | 275 nm      | 15,8 min |

## Operationsschema



## Stoffe

## benötigte Stoffe

|               | Gefahrenzeichen  | Menge  | Risiko              | Sicherheit          |
|---------------|------------------|--------|---------------------|---------------------|
| Edukte        |                  |        |                     |                     |
| 4-Nitrotoluol | Г                | 137 µg | R 23/24/25-33-51/53 | S (1/2)-28-37-45-61 |
|               | <mark>₩</mark> N |        |                     |                     |
| Ethanol       | F                | 138 µg | R 11                | S 2-7-16            |
| Katalysator   |                  |        |                     |                     |
| Titandioxid   | -                |        | -                   | -                   |
| Lösungsmittel |                  |        |                     |                     |
| Ethanol       | siehe Edukt      |        |                     |                     |

## anfallende Stoffe

|               | Gefahrenzeichen | Menge     | Risiko            | Sicherheit             |
|---------------|-----------------|-----------|-------------------|------------------------|
| Produkte      |                 |           |                   |                        |
| 4-Aminotoluol | Т               | 107,15 μg | R 23/24/25-36-40- | S (1/2)-28-36/37-45-61 |
|               | <b>∛</b> ∠N     |           | 45-50             |                        |
| Acetaldehyd   | 👏 F+            | 44,05 μg  | R 12-36/37-40     | S (2)-16-33-36/37      |
|               | Xn              |           |                   |                        |
| Wasser        | -               | 36 µg     | -                 | -                      |

| Abfall              | Entsorgung                                               |
|---------------------|----------------------------------------------------------|
| ethanolische Lösung | organische Lösungsmittel halogenfrei                     |
| Feststoffe          | Sammelbehälter für giftige und entzündliche Verbindungen |

## Geräte

| Bild    | Beschreibung                                   |
|---------|------------------------------------------------|
|         | Photomikroreaktor                              |
|         | UV-A-LED-Array (Nichia NCSU 033A)              |
| ••••    | C-Profil                                       |
|         | Anschlussstücke (Upchurch Best.Nr. P300, P301) |
|         | PEEK-Schlauch 1/8" (Upchurch Best.Nr. 1508)    |
| NEMESYS | Spritzenpumpe (Cetoni Nemesys)                 |
|         | Spritzen (ILS H-TLL PTFE-Luer-Lock)            |
|         | Anschlussstück (Upchurch Best.Nr. P830)        |
|         | Tropftrichter mit Druckausgleich 100 mL        |

|   | Vorratsgefäß (Schlenkgefäß) mit Adapter 100 mL                                                         |
|---|--------------------------------------------------------------------------------------------------------|
|   | Adapter (Upchurch)<br>für Anschluss des PEEK-Schlauchs an Glasgeräte<br>(Glasbläserarbeiten notwendig) |
|   | Schlenkkolben 500 mL                                                                                   |
|   | Gaseinleitungsrohr mit Ventilhahn                                                                      |
| B | Zweihalskolben 250 mL                                                                                  |
|   | Septum (SubaSeal)                                                                                      |
|   | UV-Schutzbrille                                                                                        |

## Bewertung

# Einfache Bewertungskennzahlen

| Atomökonomie              | 38,9%    |
|---------------------------|----------|
| Ausbeute                  | bis 100% |
| Masse Zielprodukt         | 107 μg   |
| Masse eingesetzter Stoffe | 275 μg   |

| Stoffeffizienz | 0,39 |
|----------------|------|
| E-Faktor       | 1,57 |

## Stoffintensität

Bewertungstext

## Analytik

UV-VIS

siehe oben

#### HPLC

siehe oben

## Betriebsanweisung

Versuchsbezogene Betriebsanweisung

UV-Schutzbrille bei eingeschalteten UV-A-LEDs tragen!

## Benutzerkommentare